Skip to main content
Log in

Sponge-Associated Bacteria Produce Non-cytotoxic Melanin Which Protects Animal Cells from Photo-Toxicity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Melanin is a photo-protective polymer found in many organisms. Our research shows that the bacteria associated with darkly pigmented sponges (Haliclona pigmentifera, Sigmadocia pumila, Fasciospongia cavernosa, Spongia officinalis, and Callyspongia diffusa) secrete non-cytotoxic melanin, with antioxidant activity that protects animal cells from photo-toxicity. Out of 156 bacterial strains screened, 22 produced melanin and these melanin-producing bacteria (MPB) were identified as Vibrio spp., Providencia sp., Bacillus sp., Shewanella sp., Staphylococcus sp., Planococcus sp., Salinococcus sp., and Glutamicibacter sp. Maximum melanin production was exhibited by Vibrio alginolyticus Marine Microbial Reference Facility (MMRF) 534 (50 mg ml−1), followed by two isolates of Vibrio harveyi MMRF 535 (40 mg ml−1) and MMRF 546 (30 mg ml−1). Using pathway inhibition assay and FT-IR spectral analysis, we identified the melanin secreted into the culture medium of MPB as 1,8-dihydroxynaphthalene-melanin. The bacterial melanin was non-cytotoxic to mouse fibroblast L929 cells and brine shrimps up to a concentration of 200 and 500 ppm, respectively. Bacterial melanin showed antioxidant activity at very low concentration (IC50—9.0 ppm) and at 50 ppm, melanin protected L929 cells from UV-induced intracellular reactive oxygen stress. Our study proposes sponge-associated bacteria as a potential source of non-cytotoxic melanin with antioxidant potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anas, A., Akita, H., Harashima, H., Itoh, T., Ishikawa, M., & Biju, V. (2008). Photosensitized breakage and damage of DNA by CdSe-ZnS quantum dots. Journal of Physical Chemistry B, 112, 10005–10011.

    Article  CAS  Google Scholar 

  2. Anderson, D. A., Armstrong, R. A., & Weil, E. (2013). Hyperspectral sensing of disease stress in the Caribbean reef-building coral, Orbicella faveolata—perspectives for the field of coral disease monitoring. PloS One, 8, e81478.

    Article  Google Scholar 

  3. Araujo, M., Xavier, J. R., Nunes, C. D., Vaz, P. D., & Humanes, M. (2012). Marine sponge melanin: a new source of an old biopolymer. Structural Chemistry, 23, 115–122.

    Article  CAS  Google Scholar 

  4. Asok, A., Arshad, E., Jasmin, C., Somnath Pai, S., Bright Singh, I. S., Mohandas, A., & Anas, A. (2012). Reducing Vibrio load in Artemia nauplii using antimicrobial photodynamic therapy: a promising strategy to reduce antibiotic applicationin shrimp larviculture. Microbial Biotechnology, 5, 59–68.

    Article  CAS  Google Scholar 

  5. Bailey, N. (1995). Statistical methods in biology. ed. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  6. Bashkatov, A. N., Genina, E. A., Kochubey, V. I., Stolnitz, M. M., Bashkatova, T. A., Novikova, O. V., Peshkova, A. Y. and Tuchin, V. V. (2000) Optical properties of melanin in the skin and skin-like phantoms. In: Tuchin, VV (ed.) Controlling tissue optical properties: applications in clinical study, pp. 219–226. Proceedings of SPIE.

  7. Bell, J. (2008). Functional roles of sponges. Estuarine, Coastal and Shelf Science, 79, 342–352.

    Article  Google Scholar 

  8. Bell, J. J., Davy, S. K., Jones, T., Taylor, M. W., & Webster, N. S. (2013). Could some coral reefs become sponge reefs as our climate changes? Global Change Biology, 19, 2613–2624.

    Article  Google Scholar 

  9. Beltrán-García, M. J., Prado, F. M., Oliveira, M. S., Ortiz-Mendoza, D., Scalfo, A. C., Pessoa Jr., A., Medeiros, M. H. G., White, J. F., & Di Mascio, P. (2014). Singlet molecular oxygen generation by light-activated DHN-melanin of the fungal pathogen Mycosphaerella fijiensis in black Sigatoka disease of bananas. PloS One, 9, e91616.

    Article  Google Scholar 

  10. Brenner, M., & Hearing, V. J. (2008). The protective role of melanin against UV damage in human skin. Photochemistry and Photobiology, 84, 539–549.

    Article  CAS  Google Scholar 

  11. Cerenius, L., Lee, B. L., & SÃderhall, K. (2008). The proPO-system: pros and cons for its role in invertebrate immunity. Trends in Immunology, 29, 263–271.

    Article  CAS  Google Scholar 

  12. Fieseler, L., Quaiser, A., Schleper, C., & Hentschel, U. (2006). Analysis of the first genome fragment from the marine sponge-associated, novel candidate phylum Poribacteria by environmental genomics. Environmental Microbiology, 8, 612–624.

    Article  CAS  Google Scholar 

  13. Ganesh Kumar, C., Sahu, N., Narender Reddy, G., Prasad, R. B. N., Nagesh, N., & Kamal, A. (2013). Production of melanin pigment from Pseudomonas stutzeri isolated from red seaweed Hypnea musciformis. Letters in Applied Microbiology, 57, 295–302.

    CAS  Google Scholar 

  14. Gao, Q., & Garcia-Pichel, F. (2011). Microbial ultraviolet sunscreens. Nature Reviews Microbiology, 9, 791–801.

    Article  CAS  Google Scholar 

  15. Goncalves, R. C. R., & Pombeiro-Sponchiado, S. R. (2005). Antioxidant activity of the melanin pigment extracted from Aspergillus nidulans. Biological and Pharmaceutical Bulletin, 28, 1129–1131.

    Article  CAS  Google Scholar 

  16. Henschel, U., Usher, K. M., & Taylor, M. W. (2006). Marine sponges as microbial fermenters. FEMS Microbiology Ecology, 55, 167–177.

    Article  Google Scholar 

  17. Hoffmann, M., Fischer, M., Ottesen, A., McCarthy, P. J., Lopez, J. V., Brown, E. W., & Monday, S. R. (2010). Population dynamics of Vibrio spp. associated with marine sponge microcosms. The ISME Journal, 4, 1608–1612.

    Article  Google Scholar 

  18. Jasmin, C., Anas, A., & Nair, S. (2015). Bacterial diversity associated with Cinachyra cavernosa and Haliclona pigmentifera, cohabiting sponges in the coral reef ecosystem of Gulf of Mannar, Southeast coast of India. PloS One, 10, e0123222.

    Article  CAS  Google Scholar 

  19. Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S., & Chun, J. (2012). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology, 62, 716–721.

    Article  CAS  Google Scholar 

  20. Korytowski, W., Pilas, B., Sarna, T., & Kalyanaraman, B. (1987). Photoinduced generation of hydrogen peroxide and hydroxyl radicals in melanins. Photochemistry and Photobiology, 45, 185–190.

    Article  CAS  Google Scholar 

  21. Krol, E. S., & Liebler, D. C. (1998). Photoprotective actions of natural and synthetic melanins. Chemical Research in Toxicology, 11, 1434–1440.

    Article  CAS  Google Scholar 

  22. Lane, D. J. (1991). 16S/23S rRNA sequencing. ed. New York: Wiley.

    Google Scholar 

  23. Liu, F., Yang, W., Ruan, L., & Sun, M. (2013). A Bacillus thuringiensis host strain with high melanin production for preparation of light-stable biopesticides. Annals of Microbiology, 63, 1131–1135.

    Article  CAS  Google Scholar 

  24. Madhusudhan, D. N., Mazhari, B. B. Z., Dastager, S. G., & Agsar, D. (2014). Production and cytotoxicity of extracellular insoluble and droplets of soluble melanin by Streptomyces lusitanus DMZ-3. BioMed Research International, 306895, 1–7.

    Article  Google Scholar 

  25. Maliao, R. J., Turingan, R. G., & Lin, J. (2008). Phase-shift in coral reef communities in the Florida Keys National Marine Sanctuary (FKNMS), USA. Marine Biology, 154, 841–853.

    Article  Google Scholar 

  26. Manivasagan, P., Venkatesan, J., Sivakumar, K., & Kim, S.-K. (2013). Marine actinobacterial metabolites: Current status and future perspectives. Microbiological Research, 168, 311–332.

    Article  CAS  Google Scholar 

  27. Mehbub, M. F., Lei, J., Franco, C., & Zhang, W. (2014). Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Marine Drugs, 12, 4539–4577.

    Article  Google Scholar 

  28. Morrow, K. M., Bourne, D. G., Humphrey, C., Botte, E. S., Laffy, P., Zaneveld, J., Uthicke, S., Fabricius, K. E., & Webster, N. S. (2014). Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. ISME Journal, 9, 1–15.

    Google Scholar 

  29. Nighswander-Rempel, S. P., Riesz, J., Gilmore, J., & Meredith, P. (2005). A quantum yield map for synthetic eumelanin. Journal of Chemical Physics, 123, 194901–194907.

    Article  Google Scholar 

  30. Norstrom, A. V., Nystrom, M., Lokrantz, J., & Folke, C. (2009). Alternative states on coral reefs: beyond coral-macroalgal phase shifts. Marine Ecology Progress Series, 376, 295–306.

    Article  Google Scholar 

  31. Palmer, C. V., Bythell, J. C., & Willis, B. L. (2010). Levels of immunity parameters underpin bleaching and disease susceptibility of reef corals. The FASEB Journal, 24, 1935–1946.

    Article  CAS  Google Scholar 

  32. Plonka, P. M., & Grabacka, M. (2006). Melanin synthesis in microorganisms—biotechnological and medical aspects. Acta Biochimica Polonica, 53, 429–443.

    CAS  Google Scholar 

  33. Powell, A. L., Hepburn, L. J., Smith, D. J., & Bell, J. (2010). Patterns of sponge abundance across a gradient of habitat quality in the Wakatobi Marine National Park, Indonesia. The Open Marine Biology Journal, 4, 31–38.

    Article  Google Scholar 

  34. Prota, G. (1988). Progress in the chemistry of melanins and related metabolites. Medicinal Research Reviews, 8, 525–556.

    Article  CAS  Google Scholar 

  35. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-EVANS, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26, 1231–1237.

    Article  CAS  Google Scholar 

  36. Regoli, F., Cerrano, C., Chierici, E., Bompadre, S., & Bavestrello, G. (2000). Susceptibility to oxidative stress of the Mediterranean demosponge Petrocia ficiformis: role of endosymbionts and solar irradiance. Marine Biology, 137, 453–461.

    Article  CAS  Google Scholar 

  37. Riley, P. A. (1997). Melanin. The International Journal of Biochemistry & Cell Biology, 29, 1235–1239.

    Article  CAS  Google Scholar 

  38. Rinkevich, B. (2011). Cell cultures from marine invertebrates: new insights for capturing endless stemness. Marine Biotechnology, 13, 345–354.

    Article  CAS  Google Scholar 

  39. Romero-Martinez, R., Wheeler, M., Guerrero-Plata, A., Rico, G., & Torres-Guerrero, H. (2000). Biosynthesis and functions of melanin in Sporothrix schenckii. Infection and Immunity, 68, 3696–3707.

    Article  CAS  Google Scholar 

  40. Sambrook, J., & Russel, D. W. (2001). Molecular cloning: a laboratory manual. ed. New York: Cold Spring Harbour Laboratory.

    Google Scholar 

  41. Schmitz, S., Thomas, P. D., Allen, T. M., Poznansky, M. J., & Jimbow, K. (1995). Dual role of melanins and melanin precursors as photoprotective and phototoxic agents: inhibition of ultraviolet radiation-induced lipid peroxidation. Photochemistry and Photobiology, 61, 650–655.

    Article  CAS  Google Scholar 

  42. Shcherba, V. V., Babitskaya, V. G., Kurchenko, V. P., Ikonnikova, N. V., & Kukulyanskaya, T. A. (2000). Antioxidant properties of fungal melanin pigments. Applied Biochemistry and Microbiology, 36, 491–195.

    Article  Google Scholar 

  43. Simister, R. L., Deines, P., Botte, E. S., Webster, N. S., & Taylor, M. W. (2012). Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environmental Microbiology, 14, 517–524.

    Article  CAS  Google Scholar 

  44. Soliev, A. B., Hosokawa, K., & Enomoto, K. (2011). Bioactive pigments from marine bacteria: applications and physiological roles. Evidence-based Complementary and Alternative Medicine, 2011, 17.

    Article  Google Scholar 

  45. Tu, Y.-G., Sun, Y.-Z., Tian, I.-G., Xie, M.-Y., & Chen, J. (2009). Physicochemical characterization and antioxidant activity of melanin from the muscles of Taihe Black-bone silky fowl (Gallus gallus domesticus Brisson). Food Chemistry, 114, 1345–1350.

    Article  CAS  Google Scholar 

  46. Turick, C. E., Tisa, L. S., & Caccavo, F. (2002). Melanin production and use as a soluble electron shuttle for Fe (III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Applied and Environmental Microbiology, 68, 2436–2444.

    Article  CAS  Google Scholar 

  47. Vacelet, J. (1967). Less cellules a inclusions de leponge cornee Verongia cavernicola Vacelet. Journal of Microscopie, 6, 237–240.

    Google Scholar 

  48. Wanick, R., de Sousa Barbosa, H., Frazão, L., Santelli, R., Arruda, M. L., & Coutinho, C. (2013). Evaluation of differential protein expression in Haliclona aquarius and sponge-associated microorganisms under cadmium stress. Analytical and Bioanalytical Chemistry, 405, 7661–7670.

    Article  CAS  Google Scholar 

  49. Wilkinson, C. R. (1981) Significance of sponges with cyanobacteria symbionts on Davies reef, Great Barrier Reef. Proceedings of the Fourth International Coral Reef Symposium, Manila.

  50. Wu, C. (2014). An important player in brine shrimp lethality bioassay: the solvent. Journal of Advanced Pharmaceutical Technology & Research, 5(57), 58.

    Google Scholar 

  51. Ye, M., Wang, Y., Qian, M., Chen, X., & Hu, X. (2011). Preparation and properties of the Melanin from Lachnum. International Journal of Basic and Applied Sciences, 11, 51–58.

    Google Scholar 

Download references

Acknowledgements

The authors thank the director, CSIR–National Institute of Oceanography, Goa and the scientist-in-charge, NIO Regional Centre, Kochi for extending all the required support. JC is grateful to the Department of Science and Technology, Govt. of India for the research grant SR/WOS-A/LS-339/2009. They express their gratitude to Dr. C.T. Achuthankutty, chief scientist (retired), CSIR–NIO, Goa and Dr. Trevor Platt, Plymouth Marine Laboratory for their critical comments and Mr. K.R. Muraleedharan, scientist, CSIR–NIO for preparing bathymetric map. VV and SPK acknowledges MMRF-SWQM project for the fellowship. SV is a recipient of CSIR-Nehru postdoctoral fellowship. This is CSIR-NIO contribution No. 6010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulaziz Anas.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Vijayan Vijitha and Chekidhenkuzhiyil Jasmin contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayan, V., Jasmin, C., Anas, A. et al. Sponge-Associated Bacteria Produce Non-cytotoxic Melanin Which Protects Animal Cells from Photo-Toxicity. Appl Biochem Biotechnol 183, 396–411 (2017). https://doi.org/10.1007/s12010-017-2453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2453-0

Keywords

Navigation