Skip to main content
Log in

Leucas aspera Nanomedicine Shows Superior Toxicity and Cell Migration Retarded in Prostate Cancer Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Prostate cancer is one of the most common malignancies among men worldwide. The main aim of the present work was to clarify the advantages of a nanoformulation of ayurvedic herbal plants. Specifically, we assessed the improved anticancer activity of Leucas aspera nanoparticles compared with methanolic crude extract in PC3 prostate cancer cells and normal cells. L. aspera is a plant that is used in ayurveda due to the antirheumatic, antipyretic, anti-inflammatory, antibacterial, anticancer, and cytotoxic activities. Nanoparticles of L. aspera were prepared from plant methanolic extracts. Cytotoxic effect was studied in the normal and prostate cancer cells. Size and morphology of the formulated nanoparticles was assessed using dynamic light scattering and scanning electron microscopy. In vitro cytotoxicity of L. aspera nanoparticles for PC3 cells was concentration- and time-dependent. In vitro hemolysis assay, cellular uptake studies, cell aggregation studies, and cell migration assay established the anticancerous activity of L. aspera in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Remzi, M., Waldert, M., & Djavan, B. (2004). Prostate cancer in the ageing male. The J of Men’s Health & Gender, 1, 47–54.

    Article  Google Scholar 

  2. Hu, C.-D., Choo, R., & Huang, J. (2015). Neuroendocrine differentiation in prostate cancer: a mechanism of radioresistance and treatment failure. Frontiers in Oncology, 5, 90.

    Article  Google Scholar 

  3. D’Amico, A. V. (2011). Risk-based management of prostate cancer. The New England Journal of Medicine, 365, 169–171.

    Article  Google Scholar 

  4. Jemal, A., Siegel, R., Xu, J., & Ward, E. (2010). Cancer statistics. CA: a Cancer Journal for Clinicians, 60(5), 277–300.

    Google Scholar 

  5. Bishop, J. L., Davies, A. H., Ketola, K., Zoubeidi, A. (2015). Regulation of tumor cell plasticity by the androgen receptor in prostate cancer. Endocr Relat Cancer.

  6. Whittemore, A. S., Kolonel, L. N., Wu, A. H., John, E. M., Gallagher, R. P., Howe, G. R., Burch, J. D., Hankin, J., Dreon, D. M., & West, D. W. (1995). Prostate cancer in relation to diet, physical activity, and body size in blacks, whites, and Asians in the United States and Canada. Journal of the National Cancer Institute, 87, 652–661.

    Article  CAS  Google Scholar 

  7. Gilligan, T., & Kantoff, P. W. (2002). Chemotherapy for prostate cancer. Urol., 60, 94–100.

    Article  Google Scholar 

  8. Liu, Z.-Q., Fang, J.-M., Xiao, Y.-Y., Zhao, Y., Cui, R., Hu, F., & Xu, Q. (2015). Prognostic role of vascular endothelial growth factor in prostate cancer: a systematic review and meta-analysis. International Journal of Clinical and Experimental Medicine, 8(2), 2289–2298.

    CAS  Google Scholar 

  9. Ramya, S., Ganesh, P., & Kumar, R. S. (2012). Phytochemical screening of Coleus aromaticus and Leucas aspera and their antibacterial activity against enteric pathogens B. Intern J Pharmaceut Bioll Arch, 3(1), 162–166.

    Google Scholar 

  10. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clin. Microbiol., 12, 564–582.

    CAS  Google Scholar 

  11. Sivapriyajothi, S., Kumar, P. M., Kovendan, K., Subramaniam, J., & Murugan, K. (2014). Larvicidal and pupicidal activity of synthesized silver nanoparticles using Leucas aspera leaf extract against mosquito vectors, Aedes aegypti and Anopheles Stephensi. J Entomol Acarol Res, 46, 1787.

    Article  Google Scholar 

  12. Chakraborty, M., Jain, S., & Rani, V. (2011). Nanotechnology: emerging tool for diagnostics and therapeutics. Applied Biochemistry and Biotechnology, 165(5–6), 1178–1187.

    Article  CAS  Google Scholar 

  13. Fernandez-Fernandez, A., Manchanda, R., & McGoron, A. J. (2011). Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Applied Biochemistry and Biotechnology, 165(7–8), 1628–1651.

    Article  CAS  Google Scholar 

  14. Bonifacio, B. V., Da Silva, P. B., Dos, M. A., Ramos, S., Negri, K. M. S., & Bauab, T. M. (2014). Nanotechnology-based drug delivery systems and herbal medicines: a review. International Journal of Nanomedicine, 9, 1–15.

    Article  Google Scholar 

  15. Moorkoth, D., & Nampoothiri, K. M. (2014). Synthesis, colloidal properties and cytotoxicity of biopolymer nanoparticles. Applied Biochemistry and Biotechnology, 174(6), 2181–2194.

    Article  CAS  Google Scholar 

  16. Ramezani, F., Jebali, A., & Kazemi, B. (2012). A green approach for synthesis of gold and silver nanoparticles by Leishmania sp. Applied Biochemistry and Biotechnology, 168(6), 1549–1555.

    Article  CAS  Google Scholar 

  17. Salunke, B. K., Sawant, S. S., & Kim, B. S. (2014). Potential of Kalopanax septemlobus leaf extract in synthesis of silver nanoparticles for selective inhibition of specific bacterial strain in mixed culture. Applied Biochemistry and Biotechnology, 174(2), 587–601.

    Article  CAS  Google Scholar 

  18. Borase, H. P., Salunke, B. K., Salunkhe, R. B., Patil, C. D., Hallsworth, J. E., Kim, B. S., & Patil, S. V. (2014). Plant extract: a promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles. Applied Biochemistry and Biotechnology, 173(1), 1–29.

    Article  CAS  Google Scholar 

  19. Lakshmanan, V. K. (2016). Therapeutic efficacy of nanomedicines for prostate cancer: An update. Investigative and Clinical Urology, 57(1), 21

  20. Nair, H. A., Snima, K. S., Kamath, R. C., Nair, S. V., Lakshmanan, V. K. (2015). Plumbagin Nanoparticles Induce Dose and pH Dependent Toxicity on Prostate Cancer Cells. Current Drug Delivery, 12(6), 709–16.

  21. Cherian, A. M., Snima, K. S., Kamath, C. R., Nair, S. V., Lakshmanan, V. K. (2015). Effect of Baliospermum montanum nanomedicine apoptosis induction and anti-migration of prostate cancer cells. Biomedicine & Pharmacotherapy, 71, 201–209.

  22. Snima, K. S., Arunkumar, P., Jayakumar, R., Lakshmanan, V. K. (2014). Silymarin encapsulated poly(D,L-lactic-co-glycolic acid) nanoparticles: a prospective candidate for prostate cancer therapy. Journal of Biomedical Nanotechnology, 10(4), 559–70.

  23. Srinivasan, R., Ravali, B., Suvarchala, P., Honey, A., Tejaswini, A., & Neeraja, P. (2011). Leucas aspera-medicinal plant: review. Internat J Pharma and Bio Sci, 2, 153–159.

    CAS  Google Scholar 

  24. Kurup, L. B., & Latha, M. S. (2013). Chemopreventive potential of methanolic extract of Leucas aspera against N-nitrosodiethyl amine (NDEA) induced hepatotoxicity in rats. Internat JAgric Environ Biotechnol, 6, 807–814.

    Google Scholar 

  25. Antonya, J. J., Nivedheethaa, M., Sivaa, D., Pradeephaa, G., Kokilavania, P., Kalaiselvi, S., Sankarganesha, A., Balasundaramb, A., Masilamanib, V., & Achiramana, S. (2013). Antimicrobial activity of Leucas aspera engineered silver nanoparticles against Aeromonas hydrophila in infected Catla catla. Colloids and Surfaces B: Biointerfaces, 109, 20–24.

    Article  Google Scholar 

  26. Chowdhury, N., Emran, T. B., Saha, D., Rahman, M. A., & Hosen, S. M. Z. (2012). Cytotoxic potential of the ethanolic extract of Leucas aspera. Bull Pharmaceut Res, 2(2), 87–90.

    Google Scholar 

  27. Ramalingam, R., Nath, A. R., Madhavi, B. B., & Nagulu, M. (2013). Invitro free radical scavenging, cytotoxic and acetylcholinesterase inhibitory activities of Leucas martinicensis. Int. J. of Chem. And Analyt. Scie., 4, 91–95.

    Article  CAS  Google Scholar 

  28. Raghu, P. S., Elango, V., & Oliver, C. (2012). Anti ulcer activity of ethanolic extracts of flowers of Leucas aspera wild. Int. Res J Pharm. App Sci., 2(1), 41–45.

    Google Scholar 

  29. Augustine, B. B., Dash, S., & Thomas, J. M. (2014). Leucas aspera inhibits the Dalton’s ascitic lymphoma in Swiss albino mice: a preliminary study exploring possible mechanism of action. Pharmacognosy Magazine, 10(38), 118–124.

    Article  Google Scholar 

  30. Rahman, M. S., Sadhu, S. K., & Hasan, C. M. (2007). Preliminary antinociceptive, antioxidant and cytotoxic activities of L. aspera root. Fitoterapia, 78, 552–555.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Vinoth-Kumar Lakshmanan is grateful to Department of Science and Technology, India, for providing the fund and guidelines to this work. Authors also acknowledge the financial support in the form of a M-Tech grant from Department of Science and Technology. We thank lab members K.S. Snima, Pratheeksha Pillai, Sajin Ravi and Cochin University of Science and Technology for help in guidelines, and the SEM, DLS, and TGA procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinoth-Kumar Lakshmanan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, A., Nair, S.V. & Lakshmanan, VK. Leucas aspera Nanomedicine Shows Superior Toxicity and Cell Migration Retarded in Prostate Cancer Cells. Appl Biochem Biotechnol 181, 1388–1400 (2017). https://doi.org/10.1007/s12010-016-2291-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2291-5

Keywords

Navigation