Skip to main content
Log in

Silencing of Target Chitinase Genes via Oral Delivery of dsRNA Caused Lethal Phenotypic Effects in Mythimna separata (Lepidoptera: Noctuidae)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mythimna separata walker (Lepidoptera: Noctuidae) is a polyphagous, migratory corn pest. Outbreak of M. separata has led to severe damage to corn production recently in China. RNAi (RNA interference) is a gene silencing technology applied both in model and non-model organisms, and it is especially useful for the latter in which the reverse genetic research tools are not available. RNAi approach was broadly investigated in many plant pathogens and was used for the generation of anti-pest transgenic plants. We are proposing to use this technology to silence M. separata endogenous genes, thereby, providing a biocontrol method for this insect. Feeding of dsRNAs for target Chitinase genes resulted in substantial decreases of their transcript levels in M. separata. Furthermore, silencing of target Chitinase genes led to phenotypic effects such as reduced body weight and increased mortality. Our study provided both reverse genetic research tool and potential control strategy for this insect species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Napoli, C., Lemieux, C., & Jorgensen, R. (1990). Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell, 2, 279–289.

    Article  CAS  Google Scholar 

  2. Fire, A., Xu, S. Q., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.

    Article  CAS  Google Scholar 

  3. Hamilton, A. J., & Baulcombe, D. C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 286, 950–952.

    Article  CAS  Google Scholar 

  4. Romano, N., & Macino, G. (1992). Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Molecular Microbiology, 6, 3343–3353.

    Article  CAS  Google Scholar 

  5. Ratcliff, F., Harrison, B. D., & Baulcombe, D. C. (1997). A similarity between viral defense and gene silencing in plants. Science, 276, 1558–1560.

    Article  CAS  Google Scholar 

  6. Wadhwa, R., Kaul, S. C., Miyagishi, M., & Taira, K. (2004). Know-how of RNA interference and its applications in research and therapy. Mutation Research-Reviews in Mutation Research, 567, 71–84.

    Article  CAS  Google Scholar 

  7. Wynant, N., Santos, D., & Vanden Broeck, J. (2014). Biological mechanisms determining the success of RNA interference in insects. International Review of Cell and Molecular Biology, 312, 139–167.

    Article  CAS  Google Scholar 

  8. Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., & Roberts, J. (2007). Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 25, 1322–1326.

    Article  CAS  Google Scholar 

  9. Mao, Y. B., Cai, W. J., Wang, J. W., Hong, G. J., Tao, X. Y., Wang, L. J., Huang, Y. P., & Chen, X. Y. (2007). Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology, 25, 1307–1313.

    Article  CAS  Google Scholar 

  10. Zhang, J., Khan, S. A., Hasse, C., Ruf, S., Heckel, D. G., & Bock, R. (2015). Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science, 347, 991–994.

    Article  CAS  Google Scholar 

  11. Kim, Y. H., Issa, M. S., Cooper, A. M. W., & Zhu, K. Y. (2015). RNA interference: applications and advances in insect toxicology and insect pest management. Pesticide Biochemistry and Physiology, 120, 109–117.

    Article  CAS  Google Scholar 

  12. Al-Ayedh, H., Rizwan-ul-Haq, M., Hussain, A., & Aljabr, A. M. (2016). Insecticidal potency of RNAi-based catalase knockdown in Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae). Pest management science. doi:10.1002/ps.4242.

    Google Scholar 

  13. Asokan, R., Chandra, G. S., Manamohan, M., Kumar, N. K. K., & Sita, T. (2014). Response of various target genes to diet-delivered dsRNA mediated RNA interference in the cotton bollworm, Helicoverpa armigera. Journal of Pest Science, 87, 163–172.

    Article  Google Scholar 

  14. Asokan, R., Rebijith, K. B., Roopa, H. K., & Kumar, N. K. K. (2015). Non-invasive delivery of dsGST is lethal to the sweet potato whitefly, Bemisia tabaci (G.) (Hemiptera: Aleyrodidae). Applied Biochemistry and Biotechnology, 175, 2288–2299.

    Article  CAS  Google Scholar 

  15. Wuriyanghan, H., Rosa, C., & Falk, B. W. (2011). Oral delivery of double-stranded RNAs and siRNAs induces RNAi effects in the potato/tomato Psyllid, Bactericerca cockerelli. PloS One, 6(11), e27736.

    Article  CAS  Google Scholar 

  16. Lim, Z. X., Robinson, K. E., Jain, R. G., Chandra, G. S., Asokan, R., Asgari, S., & Mitter, N. (2016). Diet-delivered RNAi in Helicoverpa armigera—progresses and challenges. Journal of Insect Physiology, 85, 86–93.

    Article  CAS  Google Scholar 

  17. Zhao, X. C., Feng, H. Q., Wu, B., Wu, X. F., Liu, Z. F., Wu, K. M., & McNeil, J. N. (2009). Does the onset of sexual maturation terminate the expression of migratory behaviour in moths? A study of the oriental armyworm, Mythimna separata. Journal of Insect Physiology, 55, 1039–1043.

    Article  CAS  Google Scholar 

  18. Hirai, K. (1976). A simple artificial diet for mass rearing of the armyworm, Leucania separata WALKER (Lepidoptera: Noctuidae). Applied Entomology & Zoology, 11, 278–283.

    CAS  Google Scholar 

  19. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  20. Whyard, S., Singh, A. D., & Wong, S. (2009). Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochemistry and Molecular Biology, 39, 824–832.

    Article  CAS  Google Scholar 

  21. San Miguel, K., & Scott, J. G. (2016). The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide. Pest Management Science, 72, 801–809.

    Article  CAS  Google Scholar 

  22. Palli, S. R. (2014). RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide. Current Opinion in Insect Science, 6, 1–8.

    Article  Google Scholar 

  23. Li, H., Guan, R., Guo, H., & Miao, X. (2015). New insights into an RNAi approach for plant defence against piercing-sucking and stem-borer insect pests. Plant, Cell & Environment, 38, 2277–2285.

    Article  CAS  Google Scholar 

  24. Kola, V. S. R., Renuka, P., Madhav, M. S. & Mangrauthia, S. K. (2015). Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing. Frontiers in physiology, 6, doi: 10.3389/fphys.2015.00119.

  25. Arakane, Y., & Muthukrishnan, S. (2010). Insect chitinase and chitinase-like proteins. Cellular and Molecular Life Sciences, 67, 201–216.

    Article  CAS  Google Scholar 

  26. Zhu, F., Sams, S., Moural, T., Haynes, K. F., Potter, M. F., & Palli, S. R. (2012). RNA interference of NADPH-cytochrome P450 reductase results in reduced insecticide resistance in the bed bug, Cimex lectularius. PloS One, 7, e31037.

    Article  CAS  Google Scholar 

  27. Das, S., Debnath, N., Cui, Y., Unrine, J., & Palli, S. R. (2015). Chitosan, carbon quantum dot, and silica nanoparticle mediated dsRNA delivery for gene silencing in Aedes aegypti: a comparative analysis. ACS Applied Materials & Interfaces, 7, 19530–19535.

    Article  CAS  Google Scholar 

  28. He, B., Chu, Y., Yin, M., Müllen, K., An, C., & Shen, J. (2013). Fluorescent nanoparticle delivered dsRNA toward genetic control of insect pests. Advanced Materials, 25, 4580–4584.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from National Natural Science Foundation of China (31460036) and Program of Higher-Level Talents of Inner Mongolia University (30105–125127)

Author Contributions

BC and WB carried out the experiments and analyzed the data. HW designed the research and wrote the manuscript. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hada Wuriyanghan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Supplementary Fig. 1

Knockdown efficiency of injected dsRNAs on target Chitinase gene expression. Quantitative real-time PCR was performed using Mse-Chi1 (a) or Mse-Chi2 (b) specific primers respectively. β-actin transcript level was used for normalization. One way ANOVA analysis was performed between treatment and control group, and the double asterisks indicate a significant difference at p < 0.01. (JPEG 176 kb)

Supplementary Table 1

Formula of the artificial diet for M. separata. (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, B., Bao, W. & Wuriyanghan, H. Silencing of Target Chitinase Genes via Oral Delivery of dsRNA Caused Lethal Phenotypic Effects in Mythimna separata (Lepidoptera: Noctuidae). Appl Biochem Biotechnol 181, 860–866 (2017). https://doi.org/10.1007/s12010-016-2254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2254-x

Keywords

Navigation