Skip to main content

Advertisement

Log in

Potential of Ca2+ in Mycobacterium tuberculosis H37Rv Pathogenesis and Survival

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The host-pathogen interaction and involvement of calcium (Ca2+) signaling in tuberculosis infection is crucial and plays a significant role in pathogenesis. Ca2+ is known as a ubiquitous second messenger that could control multiple processes and is included in cellular activities like division, motility, stress response, and signaling. However, Ca2+ is thought to be a regulative molecule in terms of TB infection but its binding relation with proteins/substrates molecules which are influenced with Ca2+ concentrations in host-pathogen interaction requires attention. So, in this review, our primary goal is to focus on some Ca2+ substrates/proteins and their imperative involvement in pathogenesis, which is unclear. We have discussed several Ca2+-binding substrate and protein that affect intracellular mechanism of infected host cell. The major involvement of these proteins/substrates including calmodulin (CaM), calpain, annexin, surfactant protein A (SP-A), surfactant protein D (SP-D), calprotectin (MRP8/14), and PE_PGRS family protein are considered to be significant; however, their detailed understanding in mycobacterium infection is limited. In this aspect, this study will help in adding up our understanding in TB biology and additionally in the development of new therapeutic approach to reduce TB pandemic worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

TB:

Tuberculosis

M. tuberculosis H37Rv:

Mycobacterium tuberculosis H37Rv

MDR:

Multi-drug resistance

WHO:

World Health Organization

MR:

Mannose receptor

CaM:

Calmodulin

CamKII:

Cam-dependent protein kinase II

SP-A:

Surfactant protein A

SP-D:

Surfactant protein D

PI3P:

Phosphatidyl-inositol 3-phosphate

EEA1:

Endosomal autoantigen 1

LAM:

Lipoarabinomannan

Interleukin-1α:

IL-1 interleukin-2 (IL-2)α

NF-AT:

Nuclear factor of activated T cells

MVs:

Membrane vesicles

RD-1:

Region of difference-1

M. smegmatis :

Mycobacterium smegmatis

MRP-8:

Migration inhibitory factor-related protein-8

MRP-14:

Migration inhibitory factor-related protein-14

PGRS/PE_PGRS:

Polymorphic GC-rich repetitive sequence

RTX:

Repeats-in-toxin

References

  1. Kumari, P., & Meena, L. S. (2014). Factors affecting susceptibility to Mycobacterium tuberculosis: a close view of immunological defence mechanism. Appl Biochem and Biotechnol, 174, 2663–2673.

    Article  CAS  Google Scholar 

  2. Meena, L. S., & Rajni (2010). Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv. The FEBS Journal, 277, 2416–2427.

    Article  CAS  Google Scholar 

  3. Monu, & Meena, L. S. (2016). Roles of triolein and lipolytic protein in the pathogenesis and survival of Mycobacterium tuberculosis: a novel therapeutic approach. Applied Biochemistry and Biotechnology, 178(7), 1377–1389.

    Article  CAS  Google Scholar 

  4. WHO 2015 global tuberculosis report. http://www.who.int/tb/publications/global_report/gtbr15_main_text.pdf

  5. Meena, P. R., Monu, & Meena, L. S. (2015). Fibronectin binding protein and Ca2+ play an access key role to mediate pathogenesis in Mycobacterium tuberculosis; an overview. Biotechnology and Applied Biochemistry. doi:10.1002/bab.1434.

    Google Scholar 

  6. Hu, C., Mayadas, N. T., Tanaka, K., Chan, J., & Salgame, P. (2000). Mycobacterium tuberculosis infection in complement receptor 3-deficient mice. Journal of Immunology, 165, 2596–2602.

    Article  CAS  Google Scholar 

  7. Ahearn, J. M., & Fearon, D. T. (1989). Structure and function of the complement receptors, CR1 (CD35) and CR2 (CD21). Advances in Immunology, 46, 183–219.

    Article  CAS  Google Scholar 

  8. Wu, C., Keiven, V. M., O’Toole, T. E., McDonald, J. A., & Ginsberg, M. H. (1995). Integrin activation and cytoskeletal interaction are essential for the assembly of a fibronectin matrix. Cell, 83, 715–724.

    Article  CAS  Google Scholar 

  9. Nunes, P., & Demaurex, N. (2010). The role of calcium signaling in phagocytosis. Journal of Leukocyte Biology, 88, 57–68.

    Article  CAS  Google Scholar 

  10. Dominguez, D. C., Guragain, M., & Patrauchan, M. (2015). Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium, 57, 151–165.

    Article  CAS  Google Scholar 

  11. Das, R., & Pandey, G. K. (2010). Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Current Genomics, 11, 2–13.

    Article  CAS  Google Scholar 

  12. Jaconi, M. E., Lew, D. P., Carpentier, J. L., Magnusson, K. E., Sjogren, M., & Stendahl, O. (1990). Cytosolic free calcium elevation mediates the phagosome–lysosome fusion during phagocytosis in human neutrophils. The Journal of Cell Biology, 110, 1555–1564.

    Article  CAS  Google Scholar 

  13. Malik, Z. A., Denning, G. M., & Kusner, D. J. (2000). Inhibition of Ca2+ signaling by Mycobacterium tuberculosis is associated with reduce phagosome-lysosome fusion and increase survival within human macrophages. Journal of Experimental Medicine, 191, 287–302.

    Article  CAS  Google Scholar 

  14. Koul, A., Herget, T., Klebl, B., & Ullrich (2004). Interplay between mycobacteria and host signalling pathways. Nature Reviews Microbiology, 2, 189–202.

    Article  CAS  Google Scholar 

  15. Vergne, I., Chua, J., & Deretic, V. (2003). Mycobacterium tuberculosis phagosome maturation arrest: selective targeting of PI3P-dependent membrane trafficking. Traffic, 4, 600–606.

    Article  CAS  Google Scholar 

  16. Vergne, I., Chua, J., Singh, S. B., & Deretic, V. (2004). Cell biology of mycobacterium tuberculosis phagosome. Annual Review of Cell and Developmental Biology, 20, 367–394.

    Article  CAS  Google Scholar 

  17. Simonsen, A., Lippé, R., Christoforidis, S., Gaullier, J. M., Brech, A., Callaghan, J., Toh, B. H., Murphy, C., Zerial, M., & Stenmark, H. (1998). EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature, 394, 494–498.

    Article  CAS  Google Scholar 

  18. Li, H., Rao, A., & Hogan, P. G. (2011). Interaction of calcineurin with substrates and targeting proteins. Trends in Cell Biology, 21, 91–103.

    Article  CAS  Google Scholar 

  19. Schorey, J. S., & Cooper, A. M. (2003). Macrophage signalling upon mycobacterial infection: the MAP kinases lead the way. Cellular Microbiology, 5, 133–142.

    Article  CAS  Google Scholar 

  20. Mulero, M. C., Aubareda, A., Orzáez, M., Messeguer, J., Serrano-Candelas, E., Martínez-Hoyer, S., Messeguer, A., Pérez-Payá, E., & Pérez-Riba, M. (2009). Inhibiting the calcineurin-NFAT (nuclear factor of activated T cells) signaling pathway with a regulator of calcineurin-derived peptide without affecting general calcineurin phosphatase activity. The Journal of Biological Chemistry, 284, 9394–9401.

    Article  CAS  Google Scholar 

  21. Jayachandran, R., Sundaramurthy, V., Combaluzier, B., Korf, H., Huygen, K., Miyazaki, T., Albrecht, I., Massner, J., & Pieters, J. (2007). Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell, 130, 37–50.

    Article  CAS  Google Scholar 

  22. Trimble, W. S., & Grinstein, S. (2007). TB or not TB: calcium regulation in mycobacterial survival. Cell, 130, 12–14.

    Article  CAS  Google Scholar 

  23. Yang, R., Xi, C., Sita, D. R., Sakai, S., Tsuchiya, K., Hara, H., Shen, Y., Qu, H., Fang, R., Mitsuyama, M., & Kawamura, I. (2014). The RD1 locus in the Mycobacterium tuberculosis genome contributes to the maturation and secretion of IL-1α from infected macrophages through the elevation of cytoplasmic calcium levels and calpain activation. Pathogens and Disease, 70, 51–60.

    Article  CAS  Google Scholar 

  24. Hawkins, T. E., Merrifield, C. J., & Moss, S. E. (2000). Calcium signaling and annexins. Cell Biochemistry and Biophysics, 33, 275–296.

    Article  CAS  Google Scholar 

  25. Majeeda, M., Perskvist, N., Ernstb, J. D., Orseliusa, K., & Stendahla, O. (1998). Roles of calcium and annexins in phagocytosis and elimination of an attenuated strain of Mycobacterium tuberculosis in human neutrophil. Microbial Pathogenesis, 24, 309–320.

    Article  Google Scholar 

  26. Blackwood, R. A., & Ernst, J. D. (1990). Characterization of calcium dependent phospholipid binding, vesicle aggregation and membrane fusion by annexins. The Biochemical Journal, 266, 195–200.

    Article  CAS  Google Scholar 

  27. Diakonova, M., Gerke, V., Ernst, J., Liautard, J. P., Vusse, G. V., & Griffiths, G. (1997). Localization of five annexins in J774 macrophages and on isolated phagosomes. Journal of Cell Science, 110, 1199–1213.

    CAS  Google Scholar 

  28. Desjardins, M., Celis, J. E., van Meer, G., Dieplinger, H., Jahraus, A., Griffiths, G., & Huber, L. A. (1994). Molecular characterization of phagosomes. The Journal of Biological Chemistry, 269, 32194–32200.

    CAS  Google Scholar 

  29. Pittis, M. G., & Garcia, R. C. (1999). Annexins VII and XI are present in a human macrophage-like cell line. Differential translocation on FcR-mediated phagocytosis. Journal of Leukocyte Biology, 66, 845–850.

    CAS  Google Scholar 

  30. Welin, A. (2011). Survival strategies of Mycobacterium tuberculosis inside the human macrophage. The American Society for Microbiology. ISBN, 978–91–7393-251-6.

  31. Jones, G. S., Amirault, H. J., & Andersen, B. R. (1990). Killing of Mycobacterium tuberculosis by neutrophils: a nonoxidative process. Journal of Infect Disease, 162, 700–704.

    Article  CAS  Google Scholar 

  32. Eum, S., Kong, J., Hong, M., Lee, Y., Kim, J., Hwang, S., Cho, S., Via, L. E., & Barry 3rd, C. E. (2010). Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest, 137, 122–128.

    Article  Google Scholar 

  33. Crouch, E., Parghi, D., Kuan, S. F., & Persson, A. (1992). Surfactant protein D: subcellular localization in nonciliated bronchiolar epithelial cells. American Journal of Physiology, 263.

  34. Hawgood, S., & Clements, J. A. (1990). Pulmonary surfactant and its apoproteins. Journal of Clinical Investigation, 86, 1.

    Article  CAS  Google Scholar 

  35. Lu, J., Wiedemann, H., Holmskov, U., Thiel, S., Timpl, R., & Reid, K. B. M. (1993). Structural similarity between lung surfactant protein D and conglutinin: two distinct, C-type lectins containing collagen-like sequences. European Journal of Biochemistry, 215, 793.

    Article  CAS  Google Scholar 

  36. Shimizu, H., Fisher, J. H., Papst, P., Benson, B., Lau, K., Mason, R. J., & Voelker, D. R. (1992). Primary structure of rat pulmonary surfactant protein D: cDNA and deduced amino acid sequence. Journal of Biological Chemistry, 267, 1853.

    CAS  Google Scholar 

  37. Haagsman, H. P. (1994). Surfactant proteins A and D. Biochemistry society transaction, 20, 100.

    Article  Google Scholar 

  38. Gaynor, C. D., McCormack, F. X., Voelker, D. R., McGowan, S. E., & Schlesinger, L. S. (1995). Pulmonary surfactant protein A mediates enhance phagocytosis of Mycobacterium tuberculosis by a direct interaction with human macrophages. Journal of Immunology., 155, 5343.

    CAS  Google Scholar 

  39. Ferguson, J. S., Voelker, D. R., McCormack, F. X., & Schlesinger, L. S. (1999). Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. Journal of Immunology, 163, 312–321.

    CAS  Google Scholar 

  40. Pasula, R., Downing, J. F., Wright, J. R., Kachel, D. L., Davis Jr., T. E., & Martin II, W. J. (1997). Surfactant protein A (SP-A) mediates attachment of Mycobacterium tuberculosis to murine alveolar macrophages. American Journal of Respiratory Cell and Molecular Biology, 17, 209–217.

    Article  CAS  Google Scholar 

  41. Haagsman, H. P. (1998). Interactions of surfactant protein A with pathogens. Biochimica et biophysica ecta, 1408, 264–277.

    Article  CAS  Google Scholar 

  42. Haagsman, H. P., Sargeant, T., Hauschka, P. V., Bradley, J., Benson, & Hawgood, S. (1990). Binding of calcium to SP-A, a surfactant-associated protein. Biochemistry, 29(38), 8894–8900.

    Article  CAS  Google Scholar 

  43. Kerkhof, C., Klempt, M., & Sorg, C. (1998). Novel insights in structure and function of MRP8 (S100A8) and MRP14 (S100A9). Biochimica et Biophysica Acta, 1448, 200–211.

    Article  Google Scholar 

  44. Hessian, P. A., Edgeworth, J., & Hogg, N. (2015). Calcium binding proteins of neutrophils and monocytes. Journal of Leukocyte Biology, 53, 197–204.

    Google Scholar 

  45. Pechkovsky, D. V., Zalutskaya, O. M., Ivanov, G. I., & Misuno, N. I. (2000). Calprotectin (MRP8/14 protein complex) release during mycobacterial infection in vitro and in vivo. FEMS Immunology and Medical Microbiology, 29, 27–33.

    Article  CAS  Google Scholar 

  46. Zwadlo, G., Bruggen, J., Gerhards, G., Schlegel, R., & Sorg, C. (1988). Two calcium-binding proteins associated with specific stage of myeloid cell diferentiation are expressed by subsets of macrophage in inflammatory tissues. Clinical and Experimental Immunology., 72, 510–515.

    CAS  Google Scholar 

  47. Meena, L. S. (2015). An overview to understand the role of PE_PGRS family proteins in Mycobacterium tuberculosis H37Rv and their potential as new drug targets. Biotechnology Applied Biochemistry, 62, 145–153.

    Article  CAS  Google Scholar 

  48. Delogu, G., Brennan, M. J., Delog, et al. (2004). Rv1818c-encoded PE PGRS protein of Mycobacterium tuberculosis is surface exposed and influences bacterial cell structure. Molecular Microbiology, 52, 725–733 6.

    Article  CAS  Google Scholar 

  49. Coote, J. G. (1992). Structural and functional relationships among the RTX toxin determinants of Gram negative bacteria. FEMS Microbiology. Reviews., 8, 137–161.

    Article  CAS  Google Scholar 

  50. Meena, L. S., & Meena, J. (2015). Cloning and characterization of a novel PE_PGRS60 protein (Rv3652) of Mycobacterium tuberculosis H37Rv exhibit fibronectin-binding property. Biotechnology Applied Biochemistry, 63(4), 525–531.

    Article  Google Scholar 

  51. Baumann, U., Wu, S., Flaherty, K. M., & McKay, D. B. (1993). Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. The EMBO Journal., 12, 3357–3364.

    CAS  Google Scholar 

  52. Bachhawat, N., & Singh, B. (2007). Mycobacterial PE PGRS proteins contain calcium-binding motifs with parallel β-roll folds. Genomics Proteomics and Bioinformatics, 5, 3–4.

    Article  Google Scholar 

  53. Malik, Z. A., Denning, G. M., & Kusner, D. (2000). Inhibition of Ca2+ signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. The Journal of Experimental Medicine, 191, 287–302.

    Article  CAS  Google Scholar 

  54. Vergne, I., Chua, J., & Deretic, V. (2003). Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. The Journal of Experimental Medicine, 198, 653–659.

    Article  Google Scholar 

  55. Malik, Z. A., Iyer, S. S., & Kusner, D. J. (2001). Mycobacterium tuberculosis phagosomes exhibit altered calmodulin-dependent signal transduction: contribution to inhibition of phagosome-lysosome fusion and intracellular survival in human macrophages. Journal of Immunology, 166, 3392–3401.

    Article  CAS  Google Scholar 

  56. Kusner, D. J. (2005). Mechanisms of mycobacterial persistence in tuberculosis. Clinical Immunology, 114, 239–247.

    Article  CAS  Google Scholar 

  57. Malik, Z. A., Thompson, C. R., Hashimi, S., Porter, B., Iyer, S. S., & Kusner, D. J. (2003). Cutting edge: Mycobacterium tuberculosis blocks Ca2+ signaling and phagosome maturation in human macrophages via specific inhibition of sphingosine kinase. Journal of Immunology, 170, 2811–2815.

    Article  CAS  Google Scholar 

  58. Stober, C. B., Lammas, D. A., Li, C. M., Kumararatne, D. S., Lightman, S. L., & McArdle, C. A. (2001). ATP-mediated killing of Mycobacterium bovis bacille Calmette-Gu’erin within human macrophages is calcium dependent and associated with the acidification of mycobacteria-containing phagosomes. Journal of Immunology, 166, 6276–6286.

    Article  CAS  Google Scholar 

  59. Wagner, D., Maser, J., Lai, B., Cai, Z., Barry 3rd, C. E., Honer Zu Bentrup, K., Russell, D. G., & Bermudez, L. E. (2005). Elemental analysis of Mycobacterium avium-, Mycobacterium tuberculosis-, and Mycobacterium smegmatis-containing phagosomes indicates pathogen-induced microenvironments within the host cell’s endosomal system. Journal of Immunology, 174, 1491–1500.

    Article  CAS  Google Scholar 

  60. Wagner, D., Maser, J., Moric, I., Boechat, N., Vogt, S., Gicquel, B., Lai, B., Reyrat, J. M., & Bermudez, L. (2005). Changes of the phagosomal elemental concentrations by Mycobacterium tuberculosis. Microbiology, 151, 323–332.

    Article  CAS  Google Scholar 

  61. Gartfield, J., & Pieters, J. (2000). Essential role for cholesterol in entry of mycobacteria into macrophage. Science, 288, 1647–1650.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Rajesh S. Gokhale for making this work possible. The authors acknowledge the financial support from GAP0092 and OLP1121 of the Department of Science and Technology and Council of Scientific & Industrial Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxman S. Meena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Meena, L.S. Potential of Ca2+ in Mycobacterium tuberculosis H37Rv Pathogenesis and Survival. Appl Biochem Biotechnol 181, 762–771 (2017). https://doi.org/10.1007/s12010-016-2247-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2247-9

Keywords

Navigation