Skip to main content
Log in

Mechanism of Fenpropathrin Resistance in Red Spider Mite, Oligonychus coffeae (Acarina: Tetranychidae), Infesting Tea [Camellia sinensis L. (O. Kuntze)]

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Red spider mite (RSM), Oligonychus coffeae (Nietner) (Acarina: Tetranychidae), has gained special attention in view of their widespread occurrence as a pest on tea [Camellia sinensis L. (O. Kuntze)]. The development of acaricide (fenpropathrin) resistance has been screened in field populations (FPs) of RSMs from different tea-growing regions of south India and compared with a laboratory-susceptible population (SP) based on toxicity bioassay, detoxifying enzyme activities, analysis of acetylcholine esterase gene (AChE, 2064 bp), and their expression pattern using semiquantitative RT-PCR. The increased resistance ratio (RR, 1.39 to 2.13) in LC50 of fenpropathrin observed in field populations of RSM provides a baseline for screening the development of resistance to fenpropathrin. This resistance developed due to hyperexpression of detoxifying enzymes, i.e., esterase (RR of 1.43 to 2.53) and glutathione S-transferase (RR of 1.11 to 1.86), and overexpression of AChE gene at 1.4 to 2.7-fold. These results necessitate molecular studies and warrant the continuous monitoring of acaricide susceptibility and resistance pattern in order to analyze the usefulness of AChE gene as target for developing alternate pest control strategies and management of pesticide resistance in tea ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SP:

Susceptible population

FP:

Field population

ER:

Expression ratio

GST:

Glutathione S-transferase

PAGE:

Polyacrylamide gel electrophoresis

PCR:

Polymerase chain reaction

RR:

Resistance ratio

RSM:

Red spider mite

RT-PCR:

Reverse transcribed-polymerase chain reaction

References

  1. Babu, A., & Muraleedharan, N. (2010). A note on the use of pesticide for the control of insect and mite pests of tea in south India. UPASI Tea Research Institute, 23.

  2. Muraleedharan, N., & Selvasundaram, R. (1996). Control of tea pests in south India. (Revised Recommendations). UPASI Hand book of Tea Culture Series 23: p. 33.

  3. Selvasundaram, R., & Muraleedharan, N. (2003). Red spider mite-biology and control. Hand book of tea culture, sect. 18 (p. 4). Valparai: UPASI Tea Research Foundation.

    Google Scholar 

  4. Thomson, W. T. (1995). Agricultural chemicals, book III, miscellaneous agricultural chemicals (p. 209). California: Thomson Publications.

    Google Scholar 

  5. Muraleedharan, N., & Ambalatharasu, B. (1983). Effectiveness of fenpropathrin against Acaphylla theae (Watt), the pink mite of tea. Indian Journal of Farm Chemistry, 1, 1–4.

    Google Scholar 

  6. Cranham, J.E., & Helle, W. (1985). Pesticide resistance in Tetranychidae. In: Spider mites, their biology, natural enemies and control (Vol. 1 A). Elsevier, Amsterdam, p. 405–421.

  7. Bass, C., & Field, L. M. (2011). Gene amplification and insecticide resistance. Pest Management Science, 67, 886–890.

    Article  CAS  Google Scholar 

  8. Devonshire, A. L. (1991). Role of esterases in resistance of insects to insecticides. Biochemical Society Transactions, 19, 755–759.

    Article  CAS  Google Scholar 

  9. Lang, G. J., Zhu, K. Y., & Zhang, C. X. (2012). Can acetylcholinesterase serve as a target for developing more selective insecticides? Current Drug Targets, 13, 495–501.

    Article  CAS  Google Scholar 

  10. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  11. Stumpf, N., & Nauen, R. (2001). Cross-resistance, inheritance, and biochemistry of mitochondrial electron transport inhibitor acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology, 94, 1577–1583.

    Article  CAS  Google Scholar 

  12. Rose, R., Barbhaiya, L., Roe, R., Rock, G., & Hodgson, E. (1995). Cytochrome P450 associated insecticide resistance and the development of biochemical diagnostic assays in Heliothis virescens. Pesticide Biochemistry and Physiology, 51, 178–191.

    Article  CAS  Google Scholar 

  13. Goka, K., & Takafuji, A. (1998). Electrophoretic detection of enzyme variation among Japanese red-coloured spider mites of the genus Tetranychus (Acari: Tetranychidae). Experimental Applied Acarology, 22, 167–176.

    Article  CAS  Google Scholar 

  14. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.

    Article  CAS  Google Scholar 

  15. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  16. Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267.

    Article  CAS  Google Scholar 

  17. Ay, R., & Yorulmaz, S. (2010). Inheritance and detoxification enzyme levels in Tetranychus urticae Koch (Acari: Tetranychidae) strain selected with chlorpyrifos. Journal of Pest Science, 83, 85–93.

    Article  Google Scholar 

  18. SPSS (2000) SysStat for Windows, version 11.5

  19. Ay, R., Sokeli, K., & Karaca, I. (2005). Enzyme variation among some southwest Turkey populations of the two-spotted spider mite, Tetranychus urticae Koch. Journal of Pest Science, 78, 175–178.

    Article  Google Scholar 

  20. Leeuwen, T. V., & Tirry, L. (2007). Esterase-mediated bifenthrin resistance in a multiresistant strain of the two-spotted spider mite, Tetranychus urticae. Pest Management Science, 63, 150–156.

    Article  Google Scholar 

  21. Sarkar, M., & Mukhopadhyay, A. (2006). Studies on some enzyme related to insecticide resistance in Helopeltis theivora Waterhouse (Insecta: Heteroptera: Miridae) from Darjeeling foothills and plains. Journal of Plantation Crops, 34, 423–428.

    Google Scholar 

  22. Vontas, J. G., Smal, G. J., & Hemingway, J. (2001). Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochemistry Journal, 357, 65–72.

    Article  CAS  Google Scholar 

  23. Sato, M. E., Tanaka, T., & Miyata, T. (2006). Monooxygenase activity in methidathion resistant and susceptible populations of Amblyseius womersleyi (Acari: Phytoseiidae). Experimental and Applied Acarology, 39, 13–24.

    Article  CAS  Google Scholar 

  24. Scharf, M. E., Neal, J. J., & Bennett, G. W. (1998). Changes of insecticide resistance levels and detoxification enzymes following insecticide selection in the German cockroach, Blattella germanica (L.,). Pesticide Biochemistry and Physiology, 59, 67–79.

    Article  Google Scholar 

  25. Scott, J. G. (1999). Cytochrome P450 and insecticide resistance. Insect Biochemistry and Molecular Biology, 29, 757–777.

    Article  CAS  Google Scholar 

  26. Rauch, N., & Nauen, R. (2003). Spirodiclofen resistance risk assessment in Tetranychus urticae (Acari: Tetranychidae): a biochemical approach. Pesticide Biochemistry Physiology, 51, 178–191.

    Google Scholar 

  27. Tsagkarakou, A., Pasteur, N., Cuany, A., Chevillon, C., & Navajas, M. (2002). Mechanism of resistance to organophosphates in Tetranychus urticae (Acari: Tetranychidae) Greece. Insect Biochemistry and Molecular Biology, 32, 417–424.

    Article  CAS  Google Scholar 

  28. Kumral, N. A., Susurluk, H., Gencer, N. S., & Gurkan, M. O. (2009). Resistance to chlorpyrifos and lambda-cyhalothrin along with detoxifying enzyme activities in field collected female populations of European red mite. Phytoparasitica, 37, 7–15.

    Article  CAS  Google Scholar 

  29. Anazawa, Y., Tomita, T., Aiki, Y., Kozaki, T., & Kono, Y. (2003). Sequence of cDNA encoding acetylcholinesterase from susceptible and resistance two spotted spider mite, Tetranychus urticae. Insect Biochemistry and Molecular Biology, 33, 509–514.

    Article  CAS  Google Scholar 

  30. Kwon, D. H., Im, J. S., Ahn, J. J., Lee, J. H., Clark, J. M., & Lee, S. H. (2010). Acetylcholinesterase point mutations putatively associated with monocrotophos resistance in the two-spotted spider mite. Pest Biochemistry and Physiology, 96, 36–42.

    Article  CAS  Google Scholar 

  31. Alon, M., Alon, F., Nauen, R., & Morin, S. (2008). Organophosphates’ resistance in the B-biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of carboxylesterase. Insect Biochemistry and Molecular Biology, 38, 940–949.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. P. Mohan Kumar, Director, UPASI Tea Research Foundation, Valparai and Dr. N. Muraleedharan, Advisor, Tea Research Association, Toklai, India, for their encouragement and support during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabu Gajjeraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amsalingam, R., Gajjeraman, P., Sam, N. et al. Mechanism of Fenpropathrin Resistance in Red Spider Mite, Oligonychus coffeae (Acarina: Tetranychidae), Infesting Tea [Camellia sinensis L. (O. Kuntze)]. Appl Biochem Biotechnol 181, 548–561 (2017). https://doi.org/10.1007/s12010-016-2230-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2230-5

Keywords

Navigation