Skip to main content
Log in

Differential Activity and Expression Profile of Antioxidant Enzymes and Physiological Changes in Wheat (Triticum aestivum L.) Under Drought

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Wheat crop may experience water deficit at crucial stages during its life cycle, which induces oxidative stress in the plants. The antioxidant status of the plant plays an important role in providing tolerance against the water stress. The objective of this study was to investigate the impact of water stress on physiological traits, antioxidant activity and transcript profile of antioxidant enzyme related genes in four wheat genotypes (C306, AKAW3717, HD2687, PBW343) at three crucial stages of plants under medium (75 % of field capacity) and severe stress (45 % of field capacity) in pots. Drought was applied by withholding water for 10 days at a particular growth stage viz. tillering, anthesis and 15 days after anthesis (15DAA). For physiological traits, a highly significant effect of water stress at a particular stage and genotypic variations for resistance to drought tolerance was observed. Under severe water stress, the malondialdehyde (MDA) content increased while the relative water content (RWC) and chlorophyll index decreased significantly in all the genotypes. The drought susceptibility index (DSI) of the genotypes varied from 0.18 to 1.9. The drought treatment at the tillering and anthesis stages was found more sensitive in terms of reduction in thousand grain weight (TGW) and grain yield. Antioxidant enzyme activities [superoxide dismutase (SOD) and peroxidase (POX)] increased with the decrease in osmotic potential in drought tolerant genotypes C306 and AKAW3717. Moreover, the transcript profile of Mn-SOD upregulated significantly and was consistent with the trend of the variation in SOD activity, which suggests that Mn-SOD might play an important role in drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

POX:

Peroxidase

CAT:

Catalase

MDA:

Malondialdehyde

References

  1. Kirigwi, F. M., van Ginkel, M., Trethowan, R., Sears, R. G., Rajaram, S., & Paulsen, G. M. (2004). Evaluation of selection strategies for wheat adaptation across water regimes. Euphytica, 135, 361–371.

    Article  Google Scholar 

  2. Almeselmani, M., Abdullah, F., Hareri, F., Naaesan, M., Ammar, M. A., Kanbar, O. Z., & Saud, A. A. (2011). Effect of drought on different physiological characters and yield component in different varieties of Syrian durum wheat. Journal of Agricultural Science, 3, 127–133.

    Article  Google Scholar 

  3. Lorenz, G. F., Bennett, J. M., & Loggale, L. B. (1987). Difference in drought resistance between two corn hybrids in water relations and root length density. Agronomy Journal, 79, 802–807.

    Article  Google Scholar 

  4. Winter, S. R., Musick, J. T., & Porter, K. B. (1998). Evaluation of screening techniques for breeding drought resistant winter wheat. Crop Science, 28, 512–516.

    Article  Google Scholar 

  5. Grzesiak, S., Grzesiak, M. T., & Filek, W. (2003). Evaluation of physiological screening tests for breeding drought resistant Triticale (x Triticosecale Wittmack). Acta Physiologiae Plantarum, 25, 29–37.

    Article  Google Scholar 

  6. Tan, Y., Liang, Z., & Shao, H. (2006). Effect of water deficits on the activity of anti-oxidative enzymes and osmoregulation among three different genotypes of radix astragali at seeding stage. Colloid Surface Biointerfaces, 49, 60–65.

    Article  CAS  Google Scholar 

  7. Singh, T., & Malik, D. S. (1983). Effect of water stress at three growth stages on the yield and water-use efficiency of dwarf wheat. Irrigation Science, 4, 239–245.

    Article  Google Scholar 

  8. Zhang, X., Wang, Y., Sun, H., Chen, S., & Shao, L. (2013). Optimizing the yield of winter wheat by regulating water consumption during vegetative and reproductive stages under limited water supply. Irrigation Science, 31, 1103–1112.

    Article  Google Scholar 

  9. Mogensen, V. O., Jensen, H. E., & Rab Md, A. (1985). Grain yield, yield components, drought sensitivity and water use efficiency of spring wheat subjected to water stress at various growth stages. Irrigation Science, 6, 131–140.

    Article  Google Scholar 

  10. Loggini, B., Scartazza, A., Brugnoli, E., & Navari-Izzo, F. (1999). Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiology, 119, 1091–1099.

    Article  CAS  Google Scholar 

  11. Lascano, H. R., Antonicelli, G. E., Luna, C. M., Melchiorre, M. N., Gomez, L. D., Racca, R. W., Trippi, V. S., & Casano, L. M. (2001). Antioxidant system response of different wheat cultivars under drought: field and in vitro studies. Australian Journal of Plant Physiology, 28(11), 1095–1102.

    CAS  Google Scholar 

  12. Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58, 221–227.

    Article  CAS  Google Scholar 

  13. Sheoran, S., Pandey, B., Sharma, P., Narwal, S., Singh, R., Sharma, I., & Chatrath, R. (2013). In silico comparative analysis and expression profile of antioxidant proteins in plants. Genetics and Molecular Research, 12(1), 537–551.

    Article  CAS  Google Scholar 

  14. Cornic, G., & Fresneau, C. (2002). Photosynthetic carbon reduction and oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Annals of Botany, 89, 887–894.

    Article  CAS  Google Scholar 

  15. Harb, A., Krishnan, A., Ambavaram, M. M. R., & Pereira, A. (2010). Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiology, 154, 1254–1271.

    Article  CAS  Google Scholar 

  16. Bota, J., Medrano, H., & Flexas, J. (2004). Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytologist, 162, 671–681.

    Article  CAS  Google Scholar 

  17. De Carvalho, M. H. C. (2008). Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signaling & Behavior, 3, 156–165.

    Article  Google Scholar 

  18. Bartosz, G. (1997). Oxidative stress in plants. Acta Physiologia Plantrum, 19, 47–64.

    Article  CAS  Google Scholar 

  19. Almeselmani, M., Deshmukh, P. S., Sairam, R. K., Kushwaha, S. R., & Singh, T. P. (2006). Protective role of antioxidant enzymes under high temperature stress. Plant Science, 171, 382–388.

    Article  CAS  Google Scholar 

  20. Sairam, R. K., Deshmukh, P. S., & Shukla, D. S. (1997). Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. Journal of Agronomy and Crop Science, 178, 171–178.

    Article  CAS  Google Scholar 

  21. DaCosta, M., & Huang, B. (2007). Changes in antioxidant enzyme activities and lipid peroxidation for bentgrass species in response to drought stress. Journal of the American Society for Horticultural Science, 132, 319–326.

    CAS  Google Scholar 

  22. Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytologist, 167, 645–663.

    Article  CAS  Google Scholar 

  23. Zhang, J., & Kirkham, M. B. (1994). Drought stress-induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species. Plant and Cell Physiology, 35, 785–791.

    CAS  Google Scholar 

  24. Keyvan, S. (2010). The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. Journal of Animal and Plant Sciences, 8(3), 1051–1060.

    Google Scholar 

  25. Barrs, H. D., & Weatherley, P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15, 413–428.

    Google Scholar 

  26. McCord, J. M., & Fridovich, I. (1969). The utility of superoxide dismutase in studying free radical reactions. I: Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. The Journal of Biological Chemistry, 244, 6056–6063.

    CAS  Google Scholar 

  27. Jebara, S., Jebara, M., Limani, F., & Aouani, M. E. (2005). Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. Journal of Plant Physiology, 102, 929–936.

    Article  Google Scholar 

  28. Rao, L., Perez, D., & White, E. (1996). Lamin proteolysis facilitates nuclear events during apoptosis. Journal of Cell Biology, 135, 1441–1455.

    Article  CAS  Google Scholar 

  29. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annals of Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  30. Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  Google Scholar 

  31. Dhindsa, R. S., Dhindsa, P., & Thorpe, T. A. (1981). Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32, 93–101.

    Article  CAS  Google Scholar 

  32. Hendry, G. A. F., & Price, A. H. (1993). Stress indicators: chlorophylls and carotenoids. In G. A. F. Hendry & J. P. Grime (Eds.), Methods in comparative plant ecology (pp. 148–152). London: Chapman & Hall.

    Chapter  Google Scholar 

  33. Sairam, R. K., Deshmukh, P. S., Shukla, D. S., & Ram, S. (1990). Metabolic activity and grain yield under moisture stress in wheat genotypes. Indian Journal of Plant Physiology, 33, 226–231.

    Google Scholar 

  34. Nyachiro, J. M., Briggs, K. G., Hoddinott, J., & Johnson-Flanagan, A. M. (2001). Chlorophyll content, chlorophyll fluorescence and water deficit in spring wheat. Cereal Research Communication, 29, 135–142.

    CAS  Google Scholar 

  35. Pan, X. Y., Wang, Y. F., Wang, G. X., Cao, Q. D., & Wang, J. (2002). Relationship between growth redundancy and size inequality in spring wheat population mulched with clear plastic film. Acta Phytoecology Sinica, 26, 177–184.

    Google Scholar 

  36. Waldren, P. R., & Flowerday, A. D. (1979). Growth stages and distribution of dry matter N, P and K in winter wheat. Agronomy Journal, 71, 391–397.

    Article  CAS  Google Scholar 

  37. Saini, H. S., & Westgate, M. E. (2000). Reproductive development in grain crops during drought. Advances in Agronomy, 68, 59–95.

    Article  Google Scholar 

  38. Fageria, N. K., Baligar, V. C., & Charles, A. J. (1991). Growth and mineral nutrition of field crops. (Books in soils, plants, and the environment series). New York: Marcel Dekker Inc.

    Google Scholar 

  39. Craudfurd, P. Q., Vadz, V., Jagadish, S. V. K., Prasad, P. V. V., & Zaman-Allah, M. (2013). Crop science experiments designed to inform crop modelling. Agricultural and Forest Meteorology, 170, 8–18.

    Article  Google Scholar 

  40. Gooding, M. J., Ellis, R. H., Shewry, P. R., & Schofield, J. D. (2003). Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat. Journal of Cereal Science, 37, 295–309.

    Article  Google Scholar 

  41. Passioura, J. (2007). The drought environment: physical, biological and agricultural perspectives. Journal of Experimental Botany, 58, 113–117.

    Article  CAS  Google Scholar 

  42. Quatracci, M. F., Sgherri, C. M., Pinzino, C., & Navari-Izzo, F. (1994). Superoxide production in wheat plants differently sensitive to drought. Proceedings of The Royal Society of Edinburgh, 102B, 287–290.

    Google Scholar 

  43. Bartoli, C. G., Simonthacchi, M., Tambussi, E. A., Beltrano, J., Montaldi, E. R., & Puntarulo, S. (1999). Drought and watering-dependent oxidative stress: effect on antioxidant content in Triticum aestivum L. leaves. Journal of Experimental Botany, 50, 375–383.

    Article  CAS  Google Scholar 

  44. Srivalli, B., Sharma, G., & Khanna-Chopra, R. (2003). Antioxidative defence system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Physiologia Plantarum, 119, 503–512.

    Article  CAS  Google Scholar 

  45. Kaur, M., Gupta, A. K., & Zhawar, V. K. (2014). Antioxidant response and lea gene expression under exogenous ABA and water deficit stress in wheat cultivars contrasting in drought tolerance. Journal of Plant Biochemistry and Biotechnology, 23(1), 18–30.

    Article  CAS  Google Scholar 

  46. Harb, A., Awad, D., & Samarah, N. (2015). Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare L.) under controlled severe drought. Journal of Plant Interactions, 12(1), 109–116.

    Article  Google Scholar 

  47. Feng, Z., Jin-Kui, G., Ying-Li, Y., Wen-Liang, H., & Li-Xin, Z. (2004). Changes in the pattern of antioxidant enzymes in wheat exposed to water deficit and rewatering. Acta Physiologiae Plantarum, 26, 345–352.

    Article  Google Scholar 

  48. Simova-Stoilova, L., Demirevska, K., Petrova, T., Tsenov, N., & Feller, U. (2008). Antioxidative protection in wheat varieties under severe recoverable drought at seedling stage. Plant, Soil and Environment, 54, 529–536.

    Article  CAS  Google Scholar 

  49. Hameed, A., Bibi, N., Akhter, J., & Iqbal, N. (2011). Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiology and Biochemistry, 49, 178–185.

    Article  CAS  Google Scholar 

  50. Mercado, J. A., Matas, A. J., Heredia, A., Valpuesta, V., & Quesada, M. A. (2004). Changes in the water binding characteristics of the cell walls from transgenic Nicotiana tabacum leaves with enhanced levels of peroxidase activity. Physiologia Plantarum, 122, 504–512.

    Article  CAS  Google Scholar 

  51. Khanna-Chopra, R., & Selote, D. S. (2007). Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than-susceptible wheat cultivar under field conditions. Environmental and Experimental Botany, 60, 276–283.

    Article  CAS  Google Scholar 

  52. Devi, R., Kaur, N., & Gupta, A. K. (2012). Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.). Indian Journal of Biochemistry & Biophysics, 49, 257–265.

    CAS  Google Scholar 

  53. Valifard, M., Moradshahi, A., & Kholdebarin, B. (2012). Biochemical and physiological responses of two wheat (Triticum aestivum L.) cultivars to drought stress applied at seedling stage. Journal of Agriculture Science and Technology, 14, 1567–1578.

    CAS  Google Scholar 

  54. Liu, X., & Huang, B. (2000). Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Science, 40, 503–510.

    Article  CAS  Google Scholar 

  55. Shao, H. B., Guo, Q. J., Chu, L. Y., Zhao, X. N., Su, Z. L., Hu, Y. C., & Cheng, J. F. (2007). Understanding molecular mechanism of higher plant plasticity under abiotic stress. Colloids Surfaces B., 54(1), 37–45.

    Article  CAS  Google Scholar 

  56. Marcinska, I., Czyczyło-Mysza, I., Skrzypek, E., Filek, M., et al. (2013). Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiologia Plantarum, 35, 451–461.

    Article  CAS  Google Scholar 

  57. Khan, N., & Naqvi, F. N. (2010). Effect of water stress on lipid peroxidation and antioxidant enzymes in local bread wheat hexaploids. Journal of Food, Agriculture and Environment, 8(2), 521–526.

    Google Scholar 

  58. Lin, K., Huang, H., & Lin, C. (2010). Cloning, expression and physiological analysis of broccoli catalase gene and Chinese cabbage ascorbate peroxidase gene under heat stress. Plant Cell Reports, 29, 575–593.

    Article  CAS  Google Scholar 

  59. Xu, L., Han, L., & Huang, B. (2011). Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery. Journal of the American Society for Horticultural Science, 136(4), 247–255.

    CAS  Google Scholar 

  60. Baek, K.-H., & Skinner, D. Z. (2003). Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Science, 165, 1221–1227.

    Article  CAS  Google Scholar 

  61. Wang, X., Cai, J., Jiang, D., Liu, E., Dai, T., & Cao, W. (2005). Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. Journal of Plant Physiology, 162, 465–472.

    Article  CAS  Google Scholar 

  62. Hu, L., Li, H., Pang, H., & Fu, J. (2012). Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. Journal of Plant Physiology, 169(2), 146–156.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is an outcome of the project DWR/RPP/10-5.4. The authors are thankful to the Indian Institute of Wheat & Barley Research (IIWBR) and Indian Council of Agricultural Research (ICAR, New Delhi) for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Sheoran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheoran, S., Thakur, V., Narwal, S. et al. Differential Activity and Expression Profile of Antioxidant Enzymes and Physiological Changes in Wheat (Triticum aestivum L.) Under Drought. Appl Biochem Biotechnol 177, 1282–1298 (2015). https://doi.org/10.1007/s12010-015-1813-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1813-x

Keywords

Navigation