Skip to main content
Log in

Catalytic Conversion of Chitosan to 5-Hydroxymethylfurfural Under Low Temperature Hydrothermal Process

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, the catalytic conversion of natural polymer chitosan to 5-HMF under low temperature hydrothermal condition was investigated. The highest 5-HMF yield of 12.1 wt% was obtained under the following conditions: 174 °C reaction temperature, 2.2 % catalyst amount, and 36.9 min reaction time. In the effect of combined severity, the 5-HMF production linearly increased to the combined severity factor of 3.07. By the way, higher combined severity factor can cause the over-degradation of 5-HMF. From this result, chitosan showed significant potential as a feedstock for the production of platform chemicals such as 5-HMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Faaij, A. P. C. (2008). Developments in international bioenergy markets and trade. Biomass and Bioenergy, 32, 657–659.

    Article  Google Scholar 

  2. Jeong, G. T., & Park, D. H. (2010). Production of sugars and levulinic acid from marine biomass Gelidium amansii. Applied Biochemistry and Biotechnology, 161, 41–52.

    Article  CAS  Google Scholar 

  3. Jeong, G. T., Ra, C. H., Hong, Y. K., Kim, J. K., Kong, I. S., Kim, S. K., & Park, D. H. (2015). Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural. Bioprocess and Biosystems Engineering, 38, 207–217.

    Article  CAS  Google Scholar 

  4. Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., & Posten, C. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Research, 1, 20–43.

    Article  Google Scholar 

  5. Meinita, M. D. H., Marhaeni, B., Winanto, T., Jeong, G. T., Khan, M. N. A. K., & Hong, Y. K. (2013). Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis), as potential resources for bioethanol production. Journal of Applied Phycology, 25, 1957–1961.

    Article  CAS  Google Scholar 

  6. Omari, K. W., Besaw, J. E., & Kerton, F. M. (2012). Hydrolysis of chitosan to yield levulinic acid and 5-hydroxymethylfurfural in water under microwave irradiation. Green Chemistry, 14, 1480–1487.

    Article  CAS  Google Scholar 

  7. Werpy, T., & Petersen, G. (2004). Top value added chemicals from biomass. Vol. I - Results of screening for potential candidates from sugars and synthesis gas (No. NREL/TP-510-35523). Golden, CO: National Renewable Energy Laboratory (NREL).

  8. Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chemistry, 12, 539–554.

    Article  CAS  Google Scholar 

  9. Putten, R. J., Waal, J. C., Jong, E., Rasrendra, C. B., Heeres, H. J., & Vries, J. G. (2013). Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chemical Reviews, 113, 1499–1597.

    Article  Google Scholar 

  10. Cha, J. Y., & Hanna, M. A. (2002). Levulinic acid production based on extrusion and pressurized batch reaction. Industrial Crops and Products, 16, 109–118.

    Article  CAS  Google Scholar 

  11. Hayes, D. J., Fitzpatrick, S., Hayes, M. H. B., Ross, J. R. H. (2010). The biofine process—production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. In: Kamm, B., Gruber, P., R., Kamm, M. eds. Biorefineries - Industrial Processes and Products, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 139-164.

  12. Patel, A. D., Serrano-Ruiz, J. C., Dumesic, J. A., & Anex, R. P. (2010). Techno-economic analysis of 5-nonanone production from levulinic acid. Chemical Engineering Journal, 160, 311–321.

    Article  CAS  Google Scholar 

  13. Inokuma, K., Takano, M., & Hoshino, K. (2013). Direct ethanol production from N-acetylglucosamine and chitin substrates by Mucor species. Biochemical Engineering Journal, 72, 24–32.

    Article  CAS  Google Scholar 

  14. Kurita, K. (2006). Chitin and chitosan: Functional biopolymers from marine Crustaceans. Marine Biotechnology, 8, 203–226.

    Article  CAS  Google Scholar 

  15. Wang, Y., Pederson, C. M., Deng, T., Qiao, Y., & Hou, X. (2013). Direct conversion of chitin biomass to 5-hydroxymethylfurfural in concentrated ZnCl2 aqueous solution. Bioresource Technology, 143, 384–390.

    Article  CAS  Google Scholar 

  16. Coh, B. Y., Lee, J. W., Kim, E. S., & Park, Y. S. (2003). Industry analysis: Chitosan. Journal of Chitin and Chitosan, 8, 127–133.

    Google Scholar 

  17. Gooday, G. W. (1990). The ecology of chitin degradation. In: Marshall, KC ed. Advances in Microbial Ecology (Volume 11), Springer US, pp. 387-430.

  18. Scordia, D., Cosentino, S. L., & Jeffries, T. W. (2013). Effectiveness of dilute oxalic acid pretreatment of Miscanthus × giganteus biomass for ethanol production. Biomass and Bioenergy, 59, 540–548.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A2006718).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwi-Taek Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SB., Jeong, GT. Catalytic Conversion of Chitosan to 5-Hydroxymethylfurfural Under Low Temperature Hydrothermal Process. Appl Biochem Biotechnol 176, 1151–1161 (2015). https://doi.org/10.1007/s12010-015-1636-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1636-9

Keywords

Navigation