Skip to main content
Log in

Enzymatic Production of Bioxylitol from Sawdust Hydrolysate: Screening of Process Parameters

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Xylose-rich sawdust hydrolysate can be an economic substrate for the enzymatic production of xylitol, a specialty product. It is important to identify the process factors influencing xylitol production. This research aimed to screen the parameters significantly affecting bioxylitol synthesis from wood sawdust by xylose reductase (XR). Enzymatic bioxylitol production was conducted to estimate the effect of different variables reaction time (2–18 h), temperature (20–70 °C), pH (4.0–9.0), NADPH (1.17–5.32 g/L), and enzyme concentration (2–6 %) on the yield of xylitol. Fractional factorial design was followed to identify the key process factors. The screening design identified that time, temperature, and pH are the most significant factors influencing bioxylitol production among the variables with the values of 12 h, 35 °C, and 7.0, respectively. These conditions led to a xylitol yield of 71 % (w/w). This is the first report on the statistical screening of process variables influencing enzyme-based bioxylitol production from lignocellulosic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rafiqul, I. S. M., & Sakinah, A. M. M. (2013). Processes for the production of xylitol—a review. Food Reviews International, 29(2), 127–156.

    Article  CAS  Google Scholar 

  2. Li, Z., Qu, H., Li, C., & Zhou, X. (2013). Direct and efficient xylitol production from xylan by Saccharomyces cerevisiae through transcriptional level and fermentation processing optimizations. Bioresource Technology, 149, 413–419.

    Article  CAS  Google Scholar 

  3. Deng, L. H., Tang, Y., & Liu, Y. (2014). Detoxification of corncob acid hydrolysate with SAA pretreatment and xylitol production by immobilized Candida tropicalis. Scientific World Journal. doi:10.1155/2014/214632.

    Google Scholar 

  4. Ping, Y., Ling, H. Z., Song, G., & Ge, J. P. (2013). Xylitol production from non-detoxified corncob hemicelluloses acid hydrolysate by Candida tropicalis. Biochemical Engineering Journal, 75, 86–91.

    Article  CAS  Google Scholar 

  5. Zhang, J., Geng, A., Yao, C., Lu, Y., & Li, Q. (2012). Xylitol production from d-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresource Technology, 105, 134–141.

    Article  CAS  Google Scholar 

  6. Jacques, N., & Casaregola, S. (2008). Safety assessment of dairy microorganisms: the hemiascomycetous yeasts. International Journal of Food Microbiology, 126, 321–326.

    Article  CAS  Google Scholar 

  7. Branco, R. F., Santos, J. C., & Silva, S. S. (2011). A novel use for sugarcane bagasse hemicellulosic fraction: xylitol enzymatic production. Biomass and Bioenergy, 35, 3241–3246.

    Article  CAS  Google Scholar 

  8. Neuhauser, W., Steininger, M., Haltrich, D., Kulbe, K. D., & Nidetzky, B. (1998). A pH-controlled fed-batch process can overcome inhibition by formate in NADH-dependent enzymatic reductions using formate dehydrogenase-catalyzed coenzyme regeneration. Biotechnology and Bioengineering, 60(3), 277–282.

    Article  CAS  Google Scholar 

  9. Nidetzky, B., Neuhauser, W., Haltrich, D., & Kulbe, K. D. (1996). Continuous enzymatic production of xylitol with simultaneous coenzyme regeneration in a charged membrane reactor. Biotechnology and Bioengineering, 52(3), 387–396.

    Article  CAS  Google Scholar 

  10. Rafiqul, I. S. M., & Sakinah, A. M. M. (2012). Kinetic studies on acid hydrolysis of Meranti wood sawdust for xylose production. Chemical Engineering Science, 71, 431–437.

    Article  CAS  Google Scholar 

  11. Rafiqul, I. S. M., & Sakinah, A. M. M. (2012). Design of process parameters for the production of xylose from wood sawdust. Chemical Engineering Research and Design, 90, 1307–1312.

    Article  CAS  Google Scholar 

  12. Rafiqul, I. S. M., Sakinah, A. M. M., & Karim, R. (2014). Production of xylose from Meranti wood sawdust by dilute acid hydrolysis. Applied Biochemistry and Biotechnology, 174(2), 542–555.

    Article  CAS  Google Scholar 

  13. Rafiqul, I. S. M., Sakinah, A. M. M., & Zularisam, A. W. (2015). Inhibition by toxic compounds in the hemicellulosic hydrolysates on the activity of xylose reductase from Candida tropicalis. Biotechnology Letters, 37(1), 191–196.

    Article  CAS  Google Scholar 

  14. Rafiqul, I. S. M., & Sakinah, A. M. M. (2015). Biochemical properties of xylose reductase prepared from adapted strain of Candida tropicalis. Applied Biochemistry and Biotechnology, 175(1), 387–399.

    Article  CAS  Google Scholar 

  15. Nidetzky, B., Brüggler, K., Kratzer, R., & Mayr, P. (2003). Multiple forms of xylose reductase in Candida intermedia: comparison of their functional properties using quantitative structure-activity relationships, steady-state kinetic analysis, and pH studies. Journal of Agricultural and Food Chemistry, 51(27), 7930–7935.

    Article  CAS  Google Scholar 

  16. Woodyer, R., Simurdiak, M., Donk, W. A., & Zhao, H. (2005). Heterologous expression, purification and characterization of a highly active xylose reductase from Neurospora crassa. Applied and Environmental Microbiology, 71(3), 1642–1647.

    Article  CAS  Google Scholar 

  17. Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965–977.

    Article  CAS  Google Scholar 

  18. Bouchekara, H. R. E. H., Dahman, G., & Nahas, M. (2011). Smart electromagnetic simulations: guidelines for design of experiments technique. Progress in Electromagnetics Research B, 31, 357–379.

    Article  Google Scholar 

  19. Graham, H. D. (1992). Stabilization of the Prussian blue color in the determination of polyphenols. Journal of Agricultural and Food Chemistry, 40, 801–805.

    Article  CAS  Google Scholar 

  20. Rafiqul, I. S. M., Sakinah, A. M. M., & Zularisam, A. W. (2015). Evaluation of sawdust hemicellulosic hydrolysate for bioproduction of xylitol by enzyme xylose reductase. Food and Bioproducts Processing, 94, 82–89.

    Article  CAS  Google Scholar 

  21. Montgomery, D. C. (2001). Design and analysis of experiments (5th ed., pp. 427–450). New York: Wiley.

    Google Scholar 

Download references

Acknowledgments

The financial support for this research work from the Universiti Malaysia Pahang (UMP) and Ministry of Higher Education, Malaysia (MTUN-COE Research Grant No. RDU 121205) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. M. Sakinah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiqul, I.S.M., Sakinah, A.M.M. & Zularisam, A.W. Enzymatic Production of Bioxylitol from Sawdust Hydrolysate: Screening of Process Parameters. Appl Biochem Biotechnol 176, 1071–1083 (2015). https://doi.org/10.1007/s12010-015-1630-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1630-2

Keywords

Navigation