Skip to main content

Advertisement

Log in

Effect of Light Wavelengths and Coherence on Growth, Enzymes Activity, and Melanin Accumulation of Liquid-Cultured Inonotus obliquus (Ach.:Pers.) Pilát

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To investigate effects of light wavelengths and coherence on growth of liquid-cultured Inonotus obliquus mycelia, melanin accumulation and enzymes activity, culture condition as light of different wavelengths and coherence were studied. Short-term exposure of the vegetative mycelium by low-intensity coherent blue light was optimal for stimulation of growth, melanin synthesis, and increase in extracellular and intracellular activities of tyrosinase and polyphenoloxidase and extracellular catalase. Red coherent light, in the same mode, can effectively be used to stimulate the growth of mycelium and to increase intracellular and extracellular activity of polyphenoloxidase, extracellular catalase and tyrosinase, and intracellular peroxidase. Low-coherent light had less stimulating effect on the biosynthetic activity of I. оbliquus. It should be used in the cultivation directed at the obtaining endomelanin, polyphenoloxidase, and extracellular tyrosinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zheng, W. F., Gu, Q., Chen, C. F., Yang, S. Z., Wei, J. C., & Chu, C. C. (2007). Aminophenols and mold-water-extracts affect the accumulation of flavonoids and their antioxidant activity in cultured mycelia of Inonotus obliquus. Mycosystema, 26, 414–426.

    CAS  Google Scholar 

  2. Chen, C. F., Zheng, W., Gao, X., Xiang, X., Sun, D., Wei, J., & Chu, C. (2007). Aqueous extract of Inonotus obliquus (Fr.) Pilát (Hymenochaetaceae) significantly inhibits the growth of sarcoma 180 by inducing apoptosis. American Journal of Pharmacology and Toxicology, 2, 10–27.

    Article  Google Scholar 

  3. Saar, M. (1991). Fungi in Khanty folk medicine. Journal of Ethnopharmacology, 31, 175–179.

    Article  CAS  Google Scholar 

  4. Zheng, W., Miao, K., Liu, Y., Zhao, Y., Zhang, M., Pan, S., & Da, Y. (2010). Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production. Applied Microbiology and Biotechnology, 87, 1237–1254. doi:10.1007/s00253-010-2682-4.

    Article  CAS  Google Scholar 

  5. Xu, X., Wu, Y., & Chen, H. (2011). Comparative antioxidative characteristics of polysaccharide-enriched extracts from natural sclerotia and cultured mycelia in submerged fermentation of Inonotus obliquus. Food Chemistry, 127, 74–79.

    Article  CAS  Google Scholar 

  6. Wang, Z. H., Huo, Y. F., Wang, B., & Shen, J. W. (2006). Submerged fermentation of Inonotus obliquus. Mycosystema, 25, 461–467.

    CAS  Google Scholar 

  7. Babitskaya, V. G., Scherba, V. V., Ikonnikova, N. V., Bisko, N. A., & Mitropolskaya, N. Y. (2002). Melanin complex from medicinal mushroom Inonotus obliquus (Pers.:Fr.) Pilat (Chaga) (Aphyllophoromycetideae). International Journal of Medicinal Mushroom, 4, 139–146.

    CAS  Google Scholar 

  8. Zheng, W. F., Zhang, M., Zhao, Y., Wang, Y., Miao, K., & Wei, Z. (2009). Melanin complex from medicinal mushroom Inonotus obliquus (Pers.:Fr.) Pilat (Chaga) (Aphyllophoromycetideae). Bioresource Technology, 100, 1327–1335.

    Article  CAS  Google Scholar 

  9. Chen, Q.-X., Song, K. K., Qiu, L., Liu, X. D., Huang, H., & Guo, H. Y. (2005). Inhibitory effects on mushroom tyrosinase by p-alkoxybenzoic acids. Food Chemistry, 91, 269–274.

    Article  CAS  Google Scholar 

  10. Sugimoto, K., Nomura, K., Nishimura, T., Kiso, T., Sugimoto, K., & Kuriki, T. (2005). Syntheses of α-arbutin-α-glycosides and their inhibitory effects on human tyrosinase. Journal of Bioscience and Bioengineering, 99, 272–276.

    Article  CAS  Google Scholar 

  11. Solano, F., Briganti, S., Picardo, M., & Ghanem, G. (2006). Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Research, 19, 550–571.

    Article  CAS  Google Scholar 

  12. Zheng-Fei, Y., Yang, Y., Feng-Hua, T., Xin-Xin, M., Yu, L., & Chang-Tian, L. (2014). Inhibitory and acceleratory effects of inonotus obliquus on tyrosinase activity and melanin formation in B16 melanoma cells. Evidence-Based Complementary and Alternative Medicine, Article ID 259836, 11 pages. doi:10.1155/2014/259836.

  13. Scandalios, J. G. (2005). Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research, 38, 995–1014.

    Article  CAS  Google Scholar 

  14. Gaetani, G. F., Ferraris, A. M., Rolfo, M., Mangerini, R., Arena, S., & Kirkman, H. N. (1996). Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood, 87, 1595–1599.

    CAS  Google Scholar 

  15. Morita, Y., Yamashita, H., Mikami, B., Iwamoto, H., Aibara, S., Terada, M., & Minami, J. (1988). Purification, crystallization, and characterization of peroxidase from Coprinus cinereus. Journal of Biochemistry, 103, 693–699.

    CAS  Google Scholar 

  16. Isobe, K., Inoue, N., Takamatsu, Y., Kamada, K., & Wakao, N. (2006). Production of catalase by fungi growing at low pH and high temperature. Journal of Bioscience and Bioengineering, 101, 73–76.

    Article  CAS  Google Scholar 

  17. Stajic, M., Persky, L., Friesem, D., Hadar, Y., Wasser, S. P., Nevo, E., & Vukojevic, J. (2006). Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enzyme and Microbial Technology, 38, 65–73.

    Article  CAS  Google Scholar 

  18. Thiyagarajan, A., Saravanakumar, K., & Kaviyarasan, V. (2008). Optimizaton of extracellular peroxidase production from Coprinus sp. Indian Journal of Science and Technology, 1, 1–5.

    Google Scholar 

  19. Fedotov, O. V., & Voloshko, T. E. (2013). Producing of enzyme preparation and analysis of enzyme preparation of peroxidase and catalase of some species of Basidiomycetes. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 1, 113–127. In Russian.

    Google Scholar 

  20. Corrochano, L. M. (2011). Fungal phototobiology: a synopsis. IMA Fungus, 2, 25–28.

    Article  Google Scholar 

  21. Zheng, W., Zhang, M., Zhao, Y., Miao, K., & Jiang, H. (2009). NMR-based metabonomic analysis on effect of light on production of antioxidant phenolic compounds in submerged cultures of Inonotus obliquus. Bioresource Technology, 100, 4481–4487.

    Article  CAS  Google Scholar 

  22. Poyedinok, N. L., Buchalo, A. S., Negriyko, A. M., Potemkina, J. V., & Mykchaylova, O. B. (2003). The action of argon and helium-neon laser radiation on growth and fructification of culinary-medicinal mushrooms Pleurotus ostereatus, Lentinus edodes and Hericium erinaceus. International Journal of Medicinal Mushroom, 5, 251–257.

    Google Scholar 

  23. Poyedinok, N. L., Mykchaylova, O. B., Shcherba, V. V., Buchalo, A. S., & Negriyko, A. M. (2008). Light regulation of growth and biosynthetic activity of Ling Zhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Aphyllophoromycetideae), in pure culture. International Journal of Medicinal Mushrooms, 10, 369–378. doi:10.1615/IntJMedMushr.v10.i4.100.

    Article  CAS  Google Scholar 

  24. Sommer, T., Chambers, J. A., Eberle, J., Lauter, F. R., & Russo, V. E. (1989). Fast light-regulated genes of Neurospora crassa. Nucleic Acids Research, 17, 5713–5723.

    Article  CAS  Google Scholar 

  25. Moor, D. (2002). Fungal morphogenesis. Cambridge University Press, 469 p. ISBN-10: 0521552958.

  26. Chen, C. H., Ringelberg, C. S., Gross, R. H., Dunlap, J. C., & Loros, J. J. (2009). Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO Journal, 28, 1029–1042.

    Article  CAS  Google Scholar 

  27. Tisch, D., & Schmoll, M. (2010). Light regulation of metabolic pathways in fungi. Applied Microbiology and Biotechnology, 85, 1259–1277.

    Article  CAS  Google Scholar 

  28. Ermakov, A.I., Arasimovich, V.V., Yarosh, N.P. et al. (1987). Methods of biochemical analyses of plant. (Ermakov, A.I., ed.), 3th ed., L.:Agropromizdat. (In Russian).

  29. Korolyuk, M. A., Ivanova, L. I., Majorova, I. G., & Tokarev, V. E. (1988). Methods for determination of catalase activity. Laboratory Work, 1, 16–19 (In Russian).

    Google Scholar 

  30. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  31. Karu, T.I. (2003). Lasers in medicine and dentistry. vol. 3. Z. Simunovic (Edn.) Vitgraf: Rieka. pp. 79–100.

  32. Karu, T.I. (2011). Light coherence. Is this property important for photomedicine? Available from: http://www.photobiology.info/Coherence.html. Accessed 06 April, 2011.

  33. Rubinov, A. N., & Afanas’ev, A. A. (2005). Nonresonance mechanisms of biological effects of coherent and incoherent light. Optics Spectroscopy, 98, 943–948.

    Article  CAS  Google Scholar 

  34. Hode, L. (2005). The importance of the coherency. Photomedicine and Laser Surgery, 23, 431–434.

    Article  Google Scholar 

  35. Zalevsky, Z., & Belkin, M. (2011). Coherence and speckle in photomedicine and photobiology. Photomedicine and Laser Surgery, 29, 655–656.

    Article  Google Scholar 

  36. Tamalaitis, G., Duchovskis, P., Bliznikas, Z., Breive, K., Ulinskaite, R., Brazaityte, A., Novičkovas, A., & Žukauskas, A. (2005). High-power light emitting diode based facility for plant cultivation. Journal of Physics D: Applied Physics, 38, 3182–3187.

    Article  Google Scholar 

  37. Laser technology in agriculture (2008). Moscow: technosphere. (In Russian)

  38. Namba, K., lnatomi, S., Mori, K., Shimosaka., Okazaki, M. (2002). Effects of LED lights on fruiting-body production in Hypsizigus marmoreus. Mushroom Science Biotechnology, 10, 141–146.

  39. Abe, M. (2007). Effect of the light emitting diode irradiation on mycelial growth and yield of Shiitake (Lentinula edodes). Mushroom Science Biotechnology, 15, 103–108 (in Japanese).

    Google Scholar 

  40. Miyazaki Y., Masuno K., Abe M., Nishizawa, H., Tetsuo Matsumoto, T., et al. (2011). Light-Stimulative Effects on the Cultivation of Edible Mushrooms by Using Blue Led. Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7), Arcachon, France, 4-7 October 2011, 58 – 67.

  41. Wasser, S. P., Sokolov, D., Reshetnikov, S. V., & Timor-Tismenetsky, M. (2000). Dietary supplements from medicinal mushrooms: diversity of types and variety of regulations. International Journal of Medicinal Mushrooms, 2, l–19.

    Article  Google Scholar 

  42. Karu, T. I., Kurchikov, A., Letokhov, V., & Mokh, V. (1996). He-Ne laser radiation influences single-channel ionic currents through cell membranes: a patch-clamp study. Lasers in the Life Sciences, 7, 35–48.

    Google Scholar 

  43. Lengeler, K. B., Davidson, R. C., D’Souza, C., Harashima, T., Shen, W. C., Wang, P., Pan, X., Waugh, M., & Heitman, J. (2000). Signal transduction cascades regulating fungal development and virulence. Microbiology and Molecular Biology Reviews, 64, 746–785.

    Article  CAS  Google Scholar 

  44. Tisch, D., Kubicek, C. P., & Schmoll, M. (2011). New insights into the mechanism of light modulated signaling by heterotrimeric G-proteins: ENVOY acts on gna1 and gna3 and adjusts cAMP levels in Trichoderma reesei (Hypocrea jecorina). Fungal Genetics and Biology, 48, 631–640.

    Article  CAS  Google Scholar 

  45. Tisch, D., & Schmoll, M. (2013). Targets of light signaling in Trichoderma reesei. BMC Genomics, 14, 657.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Poyedinok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poyedinok, N., Mykhaylova, O., Tugay, T. et al. Effect of Light Wavelengths and Coherence on Growth, Enzymes Activity, and Melanin Accumulation of Liquid-Cultured Inonotus obliquus (Ach.:Pers.) Pilát. Appl Biochem Biotechnol 176, 333–343 (2015). https://doi.org/10.1007/s12010-015-1577-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1577-3

Keywords

Navigation