Skip to main content

Advertisement

Log in

Lentivirus-Mediated Knockdown of TCTN1 Inhibits Glioma Cell Proliferation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Tectonic-1, also named as TCTN1 or TECT1, which belongs to a family of signal-sequence-containing secreted and transmembrane proteins evolutionarily conserved among eukaryotes, was reported to be involved in central nervous system development and ciliogenesis. In this paper, we found that TCTN1 is extensively expressed in human glioma cell lines. To clarify the role of TCTN1 in glioma, we employed lentivirus-mediated short hairpin RNA to knock down TCTN1 expression in U251 and U87MG glioma cells. Knockdown of TCTN1 potently inhibited cell proliferation, as determined by MTT and colony formation assays. Cell cycle analysis showed depletion of TCTN1 led to both U251 and U87MG cells arrested in the G0/G1 phase. These data suggest TCTN1 is essential for glioma cell viability, and dysregulation of TCTN1 may play a key role in glioma tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fadul, C. E., Wen, P. Y., Kim, L., & Olson, J. J. (2008). Cytotoxic chemotherapeutic management of newly diagnosed glioblastoma multiforme. Journal of Neuro-Oncology, 89, 339–357.

    Article  CAS  Google Scholar 

  2. Garcia-Gonzalo, F. R., Corbit, K. C., Sirerol-Piquer, M. S., Ramaswami, G., Otto, E. A., Noriega, T. R., Seol, A. D., Robinson, J. F., Bennett, C. L., Josifova, D. J., Garcia-Verdugo, J. M., Katsanis, N., Hildebrandt, F., & Reiter, J. F. (2011). A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nature Genetics, 43, 776–784.

    Article  CAS  Google Scholar 

  3. Gonzalez-Alegre, P., Bode, N., Davidson, B. L., & Paulson, H. L. (2005). Silencing primary dystonia: lentiviral-mediated RNA interference therapy for DYT1 dystonia. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25, 10502–10509.

    Article  CAS  Google Scholar 

  4. Goodenberger, M. L., & Jenkins, R. B. (2012). Genetics of adult glioma. Cancer Genetics, 205, 613–621.

    Article  CAS  Google Scholar 

  5. Harper, S. Q., Staber, P. D., Beck, C. R., Fineberg, S. K., Stein, C., Ochoa, D., & Davidson, B. L. (2006). Optimization of feline immunodeficiency virus vectors for RNA interference. Journal of Virology, 80, 9371–9380.

    Article  CAS  Google Scholar 

  6. Hartwell, L. H., & Kastan, M. B. (1994). Cell cycle control and cancer. Science, 266, 1821–1828.

    Article  CAS  Google Scholar 

  7. Ingham, P. W., Nakano, Y., & Seger, C. (2011). Mechanisms and functions of Hedgehog signalling across the metazoa. Nature Reviews. Genetics, 12, 393–406.

    Article  CAS  Google Scholar 

  8. Jiang, J., & Hui, C. C. (2008). Hedgehog signaling in development and cancer. Developmental Cell, 15, 801–812.

    Article  CAS  Google Scholar 

  9. Lum, L., & Beachy, P. A. (2004). The Hedgehog response network: sensors, switches, and routers. Science, 304, 1755–1759.

    Article  CAS  Google Scholar 

  10. Malumbres, M., & Barbacid, M. (2009). Cell cycle. CDKs and cancer: a changing paradigm. Nature Reviews. Cancer, 9, 153–166.

    Article  CAS  Google Scholar 

  11. Nakamura, M., & Katano, M. (2008). Hedgehog signaling pathway and its impact on development of cancer therapy. Fukuoka Igaku zasshi = Hukuoka Acta Medica, 99, 102–106.

    CAS  Google Scholar 

  12. Reiter, J. F., & Skarnes, W. C. (2006). Tectonic, a novel regulator of the Hedgehog pathway required for both activation and inhibition. Genes & Development, 20, 22–27.

    Article  CAS  Google Scholar 

  13. Rubinson, D. A., Dillon, C. P., Kwiatkowski, A. V., Sievers, C., Yang, L., Kopinja, J., Rooney, D. L., Zhang, M., Ihrig, M. M., McManus, M. T., Gertler, F. B., Scott, M. L., & Van Parijs, L. (2003). A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genetics, 33, 401–406.

    Article  CAS  Google Scholar 

  14. Schwartz, G. K., & Shah, M. A. (2005). Targeting the cell cycle: a new approach to cancer therapy. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 23, 9408–9421.

    Article  CAS  Google Scholar 

  15. Wang, L., Wei, Q., Wang, L. E., Aldape, K. D., Cao, Y., Okcu, M. F., Hess, K. R., El-Zein, R., Gilbert, M. R., Woo, S. Y., Prabhu, S. S., Fuller, G. N., & Bondy, M. L. (2006). Survival prediction in patients with glioblastoma multiforme by human telomerase genetic variation. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 24, 1627–1632.

    Article  CAS  Google Scholar 

  16. Yin, L. T., Fu, Y. J., Xu, Q. L., Yang, J., Liu, Z. L., Liang, A. H., Fan, X. J., & Xu, C. G. (2007). Potential biochemical therapy of glioma cancer. Biochemical and Biophysical Research Communications, 362, 225–229.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, H., Hang, C. et al. Lentivirus-Mediated Knockdown of TCTN1 Inhibits Glioma Cell Proliferation. Appl Biochem Biotechnol 176, 13–21 (2015). https://doi.org/10.1007/s12010-015-1498-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1498-1

Keywords

Navigation