Skip to main content
Log in

Vertical Profiles of Community Abundance and Diversity of Anaerobic Methanotrophic Archaea (ANME) and Bacteria in a Simple Waste Landfill in North China

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 08 October 2015

Abstract

Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aquilina, A., Knab, N. J., Knittel, K., Kaur, G., Geissler, A., Kelly, S. P., Fossing, H., Boot, C. S., Parkes, R. J., Mills, R. A., Boetius, A., Lloyd, J. R., & Pancost, R. D. (2010). Biomarker indicators for anaerobic oxidizers of methane in brackish-marine sediments with diffusive methane fluxes. Organic Geochemistry, 41, 414–426.

    Article  CAS  Google Scholar 

  2. Barnes, R., & Goldberg, E. (1976). Methane production and consumption in anoxic marine sediments. Geology, 4, 297–300.

    Article  CAS  Google Scholar 

  3. Beal, E. J., House, C. H., & Orphan, V. J. (2009). Manganese- and iron-dependent marine methane oxidation. Science, 325, 184–187.

    Article  CAS  Google Scholar 

  4. Bjerg, P. L., Ruegge, K., Pedersen, J. K., & Christensen, T. H. (1995). Distribution of redox-sensitive groundwater quality parameters downgradient of a landfill (Grindsted, Denmark). Environmental Science & Technology, 29, 1387–1394.

    Article  CAS  Google Scholar 

  5. Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jorgensen, B. B., Witte, U., & Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–626.

    Article  CAS  Google Scholar 

  6. Bogner, J., Spokas, K., Burton, E., Sweeney, R., & Corona, V. (1995). Landfills as atmospheric methane sources and sinks. Chemosphere, 31, 4119–4130.

    Article  CAS  Google Scholar 

  7. Bradley, M., & Tebo, A. Y. (1998). Sulfate-reducing bacterium grows with Cr (VI), U(VI), Mn(IV), and Fe(III), as electron acceptors. Elsevier Science B.V., 162, 193–198.

    Google Scholar 

  8. Caldwell, S. L., Laidler, J. R., Brewer, E. A., Eberly, J. O., Sandborgh, S. C., & Colwell, F. S. (2008). Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environmental Science & Technology, 42, 6791–6799.

    Article  CAS  Google Scholar 

  9. Deutzmann, J. S., & Schink, B. (2011). Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Applied and Environmental Microbiology, 77, 4429–4436.

    Article  CAS  Google Scholar 

  10. Golterman, H., & Bierbrauwer-Würtz, I. D. G. (1992). Colorimetric determination of sulphate in freshwater with a chromate reagent. Hydrobiologia, 228, 111–115.

    Article  CAS  Google Scholar 

  11. Goswami, D., & Kalita, H. (1988). Rapid determination of iron in water by modified thiocyanate method. Defence Science Journal, 38, 177–182.

    Article  CAS  Google Scholar 

  12. Grossman, E. L., Cifuentes, L. A., & Cozzarelli, I. M. (2002). Anaerobic methane oxidation in a landfill-leachate plume. Environmental Science & Technology, 36, 2436–2442.

    Article  CAS  Google Scholar 

  13. Hallam, S. J., Putnam, N., Preston, C. M., Detter, J. C., Rokhsar, D., Richardson, P. M., & DeLong, E. F. (2004). Reverse methanogenesis: testing the hypothesis with environmental genomics. Science, 305, 1457–1462.

    Article  CAS  Google Scholar 

  14. Han D, S. F., Chai X L. (2011) A new way of natural mitigation of methane in a refuse landfill: anaerobic and aerobic co-oxidation. Acta Scientiae Circumstantiae, 31, 791–797

  15. Holmes, D. E., Bond, D. R., O'Neil, R. A., Reimers, C. E., Tender, L. R., & Lovley, D. R. (2004). Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microbial Ecology, 48, 178–190.

    Article  CAS  Google Scholar 

  16. Knittel, K., Losekann, T., Boetius, A., Kort, R., & Amann, R. (2005). Diversity and distribution of methanotrophic archaea at cold seeps. Applied and Environmental Microbiology, 71, 467–479.

    Article  CAS  Google Scholar 

  17. Maynard, D., & Kalra, Y. (1993). Nitrate and exchangeable ammonium nitrogen (pp. 25–38). Boca Raton, FL: Soil sampling and methods of analysis. Lewis Publ.

    Google Scholar 

  18. Michaelis, W., Seifert, R., Nauhaus, K., Treude, T., Thiel, V., Blumenberg, M., Knittel, K., Gieseke, A., Peterknecht, K., Pape, T., Boetius, A., Amann, R., Jorgensen, B. B., Widdel, F., Peckmann, J., Pimenov, N. V., & Gulin, M. B. (2002). Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science, 297, 1013–1015.

    Article  CAS  Google Scholar 

  19. Moran, J. J., Beal, E. J., Vrentas, J. M., Orphan, V. J., Freeman, K. H., & House, C. H. (2008). Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environmental Microbiology, 10, 162–173.

    CAS  Google Scholar 

  20. Niemann, H., Losekann, T., de Beer, D., Elvert, M., Nadalig, T., Knittel, K., Amann, R., Sauter, E. J., Schlueter, M., Klages, M., Foucher, J. P., & Boetius, A. (2006). Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature, 443, 854–858.

    Article  CAS  Google Scholar 

  21. Orcutt, B., Boetius, A., Elvert, M., Samarkin, V., & Joye, S. B. (2005). Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochimica et Cosmochimica Acta, 69, 4267–4281.

    Article  CAS  Google Scholar 

  22. Orphan, V. J., Hinrichs, K. U., Ussler, W., Paull, C. K., Taylor, L. T., Sylva, S. P., Hayes, J. M., & Delong, E. F. (2001). Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Applied and Environmental Microbiology, 67, 1922–1934.

    Article  CAS  Google Scholar 

  23. Orphan, V. J., House, C. H., Hinrichs, K.-U., McKeegan, K. D., & DeLong, E. F. (2001). Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science, 293, 484–487.

    Article  CAS  Google Scholar 

  24. Pawlak, Z., & Pawlak, A. S. (1999). Modification of iodometric determination of total and reactive sulfide in environmental samples. Talanta, 48, 347–353.

    Article  CAS  Google Scholar 

  25. Peckmann, J., & Thiel, V. (2004). Carbon cycling at ancient methane–seeps. Chemical Geology, 205, 443–467.

    Article  CAS  Google Scholar 

  26. Reeburgh, W. S. (1976). Methane consumption in Cariaco Trench waters and sediments. Earth and Planetary Science Letters, 28, 337–344.

    Article  CAS  Google Scholar 

  27. Rutters, H., Sass, H., Cypionka, H., & Rullkotter, J. (2001). Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Archives of Microbiology, 176, 435–442.

    Article  CAS  Google Scholar 

  28. Schroth, M. H., Eugster, W., Gomez, K. E., Gonzalez-Gil, G., Niklaus, P. A., & Oester, P. (2012). Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil. Waste Management, 32, 879–889.

    Article  CAS  Google Scholar 

  29. Shima, S., & Thauer, R. K. (2005). Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Current Opinion in Microbiology, 8, 643–648.

    Article  CAS  Google Scholar 

  30. Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S. G., & Eckert, W. (2011). Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnology and Oceanography, 56, 1536–1544.

    Article  CAS  Google Scholar 

  31. Stadnitskaia, A., Muyzer, G., Abbas, B., Coolen, M., Hopmans, E., Baas, M., Van Weering, T., Ivanov, M., Poludetkina, E., & Sinninghe Damsté, J. (2005). Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea. Marine Geology, 217, 67–96.

    Article  CAS  Google Scholar 

  32. Thamdrup, B., Rosselló-Mora, R., & Amann, R. (2000). Microbial manganese and sulfate reduction in Black Sea shelf sediments. Applied and Environmental Microbiology, 66, 2888–2897.

    Article  CAS  Google Scholar 

  33. Treude, T., Boetius, A., Knittel, K., Wallmann, K., & Barker Joergensen, B. (2003). Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean. Marine Ecology Progress Series, 264, 1–14.

    Article  CAS  Google Scholar 

  34. Tsunogai, U. (2002). Carbon isotopic evidence of methane oxidation through sulfate reduction in sediment beneath cold seep vents on the sea£oor at Nankai Trough. Marine Geology, 187, 145–160.

    Article  CAS  Google Scholar 

  35. Van Amstel, A., & Swart, R. (1994). Methane and nitrous oxide emissions: an introduction. Fertilizer Research, 37, 213–225.

    Article  Google Scholar 

  36. Wang, Y.-S., Byrd, C. S., & Barlaz, M. A. (1994). Anaerobic biodegradability of cellulose and hemicellulose in excavated refuse samples using a biochemical methane potential assay. Journal of Industrial Microbiology, 13, 147–153.

    Article  CAS  Google Scholar 

  37. Wankel, S. D., Adams, M. M., Johnston, D. T., Hansel, C. M., Joye, S. B., & Girguis, P. R. (2012). Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Environmental Microbiology, 14, 2726–2740.

    Article  CAS  Google Scholar 

  38. Zehnder, A., & Brock, T. (1979). Methane formation and methane oxidation by methanogenic bacteria. Journal of Bacteriology, 137, 420–432.

    CAS  Google Scholar 

  39. Zhu, G., Jetten, M. S., Kuschk, P., Ettwig, K. F., & Yin, C. (2010). Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems. Applied Microbiology and Biotechnology, 86, 1043–1055.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was funded by National Natural Science Foundation of China (Grant Numbers 41402206 and 41272253); Natural Science Foundation of Jilin Province (No.20130101027JC); Youth Science Foundation of Jilin Province (No. 20140520152JH). The authors are grateful to the support of China postdoctoral Science Foundation (No. 2013M541311); and Key Laboratory for Solid Waste Management and Environment Safety Open Fund (Grant Number SWMES 2013-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zifang Chi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Ding, L., Wang, X. et al. Vertical Profiles of Community Abundance and Diversity of Anaerobic Methanotrophic Archaea (ANME) and Bacteria in a Simple Waste Landfill in North China. Appl Biochem Biotechnol 175, 2729–2740 (2015). https://doi.org/10.1007/s12010-014-1456-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1456-3

Keywords

Navigation