Skip to main content
Log in

Microalgal Cell Disruption via Ultrasonic Nozzle Spraying

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this study was to understand the effect of operating parameters, including ultrasound amplitude, spraying pressure, nozzle orifice diameter, and initial cell concentration on microalgal cell disruption and lipid extraction in an ultrasonic nozzle spraying system (UNSS). Two algal species including Scenedesmus dimorphus and Nannochloropsis oculata were evaluated. Experimental results demonstrated that the UNSS was effective in the disruption of microalgal cells indicated by significant changes in cell concentration and Nile red-stained lipid fluorescence density between all treatments and the control. It was found that increasing ultrasound amplitude generally enhanced cell disruption and lipid recovery although excessive input energy was not necessary for best results. The effect of spraying pressure and nozzle orifice diameter on cell disruption and lipid recovery was believed to be dependent on the competition between ultrasound-induced cavitation and spraying-generated shear forces. Optimal cell disruption was not always achieved at the highest spraying pressure or biggest nozzle orifice diameter; instead, they appeared at moderate levels depending on the algal strain and specific settings. Increasing initial algal cell concentration significantly reduced cell disruption efficiency. In all UNSS treatments, the effectiveness of cell disruption and lipid recovery was found to be dependent on the algal species treated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brennan, L., & Owende, P. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577.

    Article  CAS  Google Scholar 

  2. Scott, A. S., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J., & Smith, A. G. (2010). Biodiesel from algae: challenges and prospects. Current Opinion in Chemical Biology, 21, 277–286.

    Article  CAS  Google Scholar 

  3. Benemann, J. R. (1997). CO2 mitigation with microalgae systems. Energy Conversion and Management, 38, S475–S479.

    Article  CAS  Google Scholar 

  4. Shen, Y., Pei, Z. J., Yuan, W. Q., & Mao, E. R. (2009). Effect of nitrogen and extraction method on algae lipid yield. International Journal of Agricultural and Biological Engineering, 2(1), 51–57.

    CAS  Google Scholar 

  5. Nonomura, A.M., (1987). Process for producing a naturally-derived carotene/oil composition by direct extraction from algae. U. S. Patent # 4,680,314.

  6. Rodríguez-Ruiz, J., Belarbi, E. H., Sánchez, J. L. G., & Alonso, D. L. (1998). Rapid simultaneous lipid extraction and transesterification for fatty acid analyses. Biotechnology Techniques, 12(9), 689–691.

    Article  Google Scholar 

  7. Lee, S. J., Yoon, B. D., & Oh, H. M. (1998). Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnology Techniques, 12(7), 553–556.

    Article  CAS  Google Scholar 

  8. Mahvi, A. H., & Dehghani, M. H. (2005). Evaluation of ultrasonic technology in removal of algae from surface waters. Pakistan Journal of Biological Sciences, 8(10), 1457–1459.

    Article  Google Scholar 

  9. Tang, J. W., Wu, Q. Y., Hao, H. W., Chen, Y. F., & Wu, M. S. (2003). Growth inhibition of the cyanobacterium Spirulina (Arthrospira) platensis by 1.7 MHz ultrasonic irradiation. Journal of Applied Phycology, 15, 37–43.

    Article  CAS  Google Scholar 

  10. Tang, J. W., Wu, Q. Y., Hao, H. W., Chen, Y. F., & Wu, M. S. (2004). Effect of 1.7 MHz ultrasound on a gas-vacuolate cyanobacterium and a gas-vacuole negative cyanobacterium. Colloids and Surfaces. B, Biointerfaces, 36, 115–121.

    Article  CAS  Google Scholar 

  11. Ahn, C. Y., Park, M. H., Joung, S. H., Kim, H. S., Jang, K. Y., & Oh, H. M. (2003). Growth inhibition of cyanobacteria by ultrasonic radiation: laboratory and enclosure studies. Environmental Science & Technology, 37, 3031–3037.

    Article  CAS  Google Scholar 

  12. Wiyarno, B., Yunus, R. M., & Mel, M. (2010). Ultrasound extraction assisted (UEA) of oil from microalgae (Nannochloropsis sp.). International Journal of Engineering Science, 1(3), 65–71.

    Google Scholar 

  13. Wiyarno, B., Yunus, R. M., & Mel, M. (2011). Extraction of algae oil from Nannochloropsis sp.: a study of soxhlet and ultrasonic-assisted extraction. Journal of Applied Sciences, 11(21), 3607–3612.

    Article  Google Scholar 

  14. Wang, M., Yuan, W. Q., Jiang, X. N., Jing, Y., & Wang, Z. C. (2014). Disruption of microalgal cells using high-frequency focused ultrasound. Bioresource Technology, 153, 315–321.

    Article  CAS  Google Scholar 

  15. Ruff, G. A., Sagar, A. D., & Faeth, G. M. (1989). Structure and mixing properties of pressure-atomized sprays. AIAA Journal, 27(7), 901–908.

    Article  CAS  Google Scholar 

  16. Kourmatzis, A., Pham, P. X., & Masri, A. R. (2013). Air assisted atomization and spray density characterization of ethanol and a range of biodiesels. Fuel, 108, 758–770.

    Article  CAS  Google Scholar 

  17. Faeth, G. M., Hsiang, L. P., & Wu, P. K. (1995). Structure and breakup properties of sprays. International Journal of Multiphase Flow, 21, 99–127.

    Article  CAS  Google Scholar 

  18. Dumouchel, C. (2008). On the experimental investigation on primary atomization of liquid streams. Experiments in Fluids, 45, 371–422.

    Article  Google Scholar 

  19. Dalmoro, A., Barba, A. A., Lamberti, G., & d’Amore, M. (2012). Intensifying the microencapsulation process: ultrasonic atomization as an innovative approach. European Journal of Pharmaceutics and Biopharmaceutics, 80, 471–477.

    Article  CAS  Google Scholar 

  20. Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Borghi, M. D. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing, 48, 1146–1151.

    Article  CAS  Google Scholar 

  21. Sorokin, C., & Krauss, R. W. (1958). The effect of light intensity on the growth rates of green algae. Plant Physiology, 33, 109–113.

    Article  CAS  Google Scholar 

  22. Shaaban, A. M., & Duerinckx, A. J. (2000). Wall shear stress and early atherosclerosis: a review. American Journal of Roentgenology, 174, 1657–1665.

    Article  CAS  Google Scholar 

  23. Kelemen, M. V., & Sharpe, J. E. (1979). Controlled cell disruption: a comparison of the forces required to disrupt different micro-organisms. Journal of Cell Science, 35(1), 431–441.

    CAS  Google Scholar 

  24. Gerde, J. A., Montalbo-Lomboy, M., Yao, L. X., Grewell, D., & Wang, T. (2012). Evaluation of microalgae cell disruption by ultrasonic treatment. Bioresource Technology, 125, 175–181.

    Article  CAS  Google Scholar 

  25. Ramanan, R. N., Tey, B. T., Ling, T. C., & Ariff, A. B. (2009). Classification of pressure range based on the characterization of Escherichia coli cell disruption in high pressure homogenizer. American Journal of Biochemistry and Biotechnology, 5, 21–29.

    Article  CAS  Google Scholar 

  26. Halim, R., Harun, R., Danquah, M. K., & Webley, P. A. (2012). Microalgal cell disruption for biofuel development. Applied Energy, 91, 116–121.

    Article  CAS  Google Scholar 

  27. Gogate, P. R., Wilhelm, A. M., & Pandit, A. B. (2003). Some aspects of the design of sonochemical reactors. Ultrasonics Sonochemistry, 10, 325–330.

    Article  CAS  Google Scholar 

  28. Adam, F., Abert-Vian, M., Peltier, G., & Chemat, F. (2012). “Solvent-free” ultrasound assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. Bioresource Technology, 114, 457–465.

    Article  CAS  Google Scholar 

  29. Lee, A. K., Lewis, D. M., & Ashman, P. J. (2012). Disruption of microalgal cells for the extraction of lipids for biofuels: processes and specific energy requirements. Biomass and Bioenergy, 46, 89–101.

    Article  CAS  Google Scholar 

  30. Chen, W., Zhang, C. W., Song, L. R., Sommerfeld, M., & Hu, Q. (2009). A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods, 77, 41–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the US National Science Foundation (Award # CMMI-1239078) and the startup fund of North Carolina State University. The authors want to thank Aurizon Ultrasonics for providing the ultrasonic nozzle spraying system and especially Mr. Tom Bett of Aurizon Ultrasonics for his valuable assistance in system setup and testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Yuan, W. Microalgal Cell Disruption via Ultrasonic Nozzle Spraying. Appl Biochem Biotechnol 175, 1111–1122 (2015). https://doi.org/10.1007/s12010-014-1350-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1350-z

Keywords

Navigation