Skip to main content
Log in

Enzymes Produced by Halotolerant Spore-Forming Gram-Positive Bacterial Strains Isolated From a Resting Habitat (Restinga de Jurubatiba) in Rio de Janeiro, Brazil: Focus on Proteases

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The screening for hydrolases-producing, halotolerant, and spore-forming gram-positive bacteria from the root, rhizosphere, and non-rhizosphere soil of Blutaparon portulacoides, a plant found in the Restinga de Jurubatiba located at the northern region of Rio de Janeiro State, Brazil, resulted in the isolation of 22 strains. These strains were identified as Halobacillus blutaparonensis (n = 2), Oceanobacillus picturae (n = 5), and Oceanobacillus iheyensis (n = 15), and all showed the ability to produce different extracellular enzymes. A total of 20 isolates (90.9 %) showed activity for protease, 5 (22.7 %) for phytase, 3 (13.6 %) for cellulase, and 2 (9.1 %) for amylase. Some bacterial strains were capable of producing three (13.6 %) or two (9.1 %) distinct hydrolytic enzymes. However, no bacterial strain with ability to produce esterase and DNase was observed. The isolate designated M9, belonging to the species H. blutaparonensis, was the best producer of protease and also yielded amylase and phytase. This strain was chosen for further studies regarding its protease activity. The M9 strain produced similar amounts of protease when grown either without or with different NaCl concentrations (from 0.5 to 10 %). A simple inspection of the cell-free culture supernatant by gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of three major alkaline proteases of 40, 50, and 70 kDa, which were fully inhibited by phenylmethylsulfonyl fluoride (PMSF) and tosyl-l-phenylalanine chloromethyl ketone (TPCK) (two classical serine protease inhibitors). The secreted proteases were detected in a wide range of temperature (from 4 to 45 °C) and their hydrolytic activities were stimulated by NaCl (up to 10 %). The serine proteases produced by the M9 strain cleaved gelatin, casein, albumin, and hemoglobin, however, in different extensions. Collectively, these results suggest the potential use of the M9 strain in biotechnological and/or industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Myers, J. H., Simberloff, D., Kuris, A. M., & Carey, J. R. (2000). Letters in Applied Microbiology, 15, 316–320.

    Google Scholar 

  2. Araújo, D. S. D., Scarano, F. R., Sá, C. F. C., Kurtz, B. C., Zaluar, H. L. T., Montezuma, R. C. M., & Oliveira, R. C. (1998). Revista Brasileira de Zoologia, 18, 39–62.

    Google Scholar 

  3. Kelecom, A., Reis, G. L., Fevereiro, P. C., Silva, J. G., Santos, M. G., Mello Neto, C. B., Gonzalez, M. S., Gouvea, R. C., & Almeida, G. S. (2002). Anais da Academia Brasileira de Ciências, 74, 171–181.

    Article  CAS  Google Scholar 

  4. Bernaardi, H., & Seeliger, U. (1989). Ciência & Cultura, 41, 1110–1113.

    Google Scholar 

  5. Ferreira, E. O., & Dias, D. A. A. (2000). Phytochemistry, 53, 145–147.

    Article  CAS  Google Scholar 

  6. Barbosa, D. C., Von Der Weid, I., Vaisman, N., & Seldin, L. (2006). Journal of Microbiology and Biotechnology, 16, 193–199.

    Google Scholar 

  7. Ventosa, A., Nieto, J. J., & Oren, A. (1998). Microbiology and Molecular Biology Reviews, 62, 504–544.

    CAS  Google Scholar 

  8. Galinski, E. A. (1993). Cellular and Molecular Life Sciences, 49, 487–496.

    Article  CAS  Google Scholar 

  9. Fujinami, S., & Fujisawa, M. (2010). Environmental Technology, 31, 845–856.

    Article  CAS  Google Scholar 

  10. Gupta, R., Beg, K. Q., & Lorenz, P. (2002). Applied Microbiology and Biotechnology, 59, 15–32.

    Article  CAS  Google Scholar 

  11. Seldin, L. V., Elsas, J. D., & Penido, E. G. C. (1983). Plant and Soil, 70, 243–255.

    Article  Google Scholar 

  12. Williams, S. T., Goodfellow, M., Alderson, G., Wellington, E., Sneath, P. H., & Sackin, M. J. (1983). Journal of Microbiology, 129, 1743–1813.

    Article  CAS  Google Scholar 

  13. Mishra, S., & Behera, N. (2008). African Journal of Biotechnology, 7, 3326–3331.

    CAS  Google Scholar 

  14. Bairagi, A., Ghosh, K. S., Sem, S. K., & Ray, A. (2002). Aquaculture International, 10, 109–121.

    Article  CAS  Google Scholar 

  15. Rosado, A. S., Azevedo, F. S., Cruz, D. W., Van Elsas, J. D., & Seldin, L. (1998). Journal of Applied Microbiology, 84, 216–226.

    Article  Google Scholar 

  16. Schoofs, A., Odds, F. C., Colebunders, R., Leven, M., & Goussens, H. (1997). European Journal of Clinical Microbiology & Infectious Diseases, 16, 296–300.

    Article  CAS  Google Scholar 

  17. MacFaddin, J. D. (1985). Willians & Wilkins, Baltimore, 1, 275–284

  18. Price, M. F., Wilkinson, I. D., & Gentry, L. O. (1982). Sabouraudia, 15, 179–185.

    Article  Google Scholar 

  19. Alvarez, V. M., Von der Weid, I., Seldin, L., & Santos, A. L. S. (2006). Letters in Applied Microbiology, 43, 625–630.

    Article  CAS  Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  21. Heussen, C., & Dowdle, E. B. (1980). Analytical Biochemistry, 102, 196–202.

    Article  CAS  Google Scholar 

  22. Bernardi, H., Cordazzo, C. V., & Costa, C. S. B. (1987). Ciência & Cultura, 35, 545–547.

    Google Scholar 

  23. Moreno, M. L., Piubeli, F., Bonfá, M. R., García, M. T., Durrant, L. R., & Mellado, E. (2012). Journal of Applied Microbiology, 113, 550–559.

    Article  CAS  Google Scholar 

  24. Sánchez-Porro, C., Mellado, E., Bertoldo, C., Antranikian, G., & Ventosa, A. (2003). Extremophiles, 7, 221–228.

    Google Scholar 

  25. Moreno, M. L., García, M. T., Ventosa, A., & Mellado, E. (2009). FEMS Microbiology Ecology, 68, 59–71.

    Article  Google Scholar 

  26. Dang, H., Zhu, H., Wang, J., & Li, T. (2009). World Journal of Microbiology and Biotechnology, 25, 71–79.

    Article  CAS  Google Scholar 

  27. Cojoc, R., Merciu, S., Popescu, G., Dumitru, L., Kamekura, M., & Enache, M. (2009). Roman Biotechnology Letters, 14, 4658–4664.

    Google Scholar 

  28. Rohban, R., Amoozegar, M. A., & Ventosa, A. (2009). Journal of Industrial Microbiology & Biotechnology, 36, 333–340.

    Article  CAS  Google Scholar 

  29. Mohaparta, B. R., Baberjee, U. C., & Bapuji, M. (1998). Journal of Biotechnology, 60, 113–117.

    Article  Google Scholar 

  30. Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (2008). Microbiology and Molecular Biology Reviews, 62, 597–635.

    Google Scholar 

  31. Namwong S., Hiraga, K. Takada, K., Tsunemi, M., Tanasupawat, S., & Oda, K. (2006). Bioscience, Biotechnology, and Biochemistry, 70, 1395–1401.

  32. Karbalaei-Heidari, H. R., Amoozegar, M. A., Hajighasemi, M., Ziaee, A. A., & Ventosa, A. (2008). Journal of Industrial Microbiology & Biotechnology, 36, 21–27.

    Article  Google Scholar 

  33. Lama, L., Romano, I., Calanderi, V., Nicolaus, B., & Gambacorta, A. (2005). Research in Microbiology, 156, 478–484.

    Article  CAS  Google Scholar 

  34. Gómez, J., & Steiner, W. (2004). Food Technology and Biotechnology, 2, 223–235.

    Google Scholar 

  35. Oren, A. (2010). Environmental Technology, 31, 825–834.

    Article  CAS  Google Scholar 

  36. Margesin, R., & Schinner, F. (2001). Extremophiles, 5, 73–83.

    Article  CAS  Google Scholar 

  37. Mellado, E., Sánchez-Porro, C., Martín, S., & Ventosa, A. (2004). Springer, 285–295.

  38. Jayakumar, R., Jayashree, S., Annapurna, B., & Seshadri, S. (2012). Applied Biochemistry and Biotechnology, 168, 1849–1866.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the following Brazilian agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa no Estado do Rio de Janeiro (FAPERJ), and Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). André L.S. Santos and Lucy Seldin were supported by CNPq and FAPERJ fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Luis Souza d. Santos.

Additional information

Anderson Fragoso dos Santos and Clarissa Almeida Pacheco contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

d. Santos, A.F., Pacheco, C.A., Valle, R.d.S. et al. Enzymes Produced by Halotolerant Spore-Forming Gram-Positive Bacterial Strains Isolated From a Resting Habitat (Restinga de Jurubatiba) in Rio de Janeiro, Brazil: Focus on Proteases. Appl Biochem Biotechnol 174, 2748–2761 (2014). https://doi.org/10.1007/s12010-014-1223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1223-5

Keywords

Navigation