Skip to main content
Log in

Characterization and Stability Analysis of Biopolymeric Matrices Designed for Phage-Controlled Release

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Alginate and low methoxylated pectin gel matrices emulsified with oleic acid were studied for phage oral delivery. Matrix structural analysis revealed that emulsified pectin (EP) gel microbeads were harder and more cohesive than those of emulsified alginate (EA). EP showed high swelling capacity and slower matrix degradation in aqueous media, suggesting that oleic acid is mainly located on the surface of EP microbeads. EA and EP matrices having p-nitrophenyl palmitate (C-16 ester) as tracer dissolved into oleic acid and in the presence of lipase confirmed this hypothesis which is consistent with EP better phage protective capability. Surface analysis of gel microbeads by scanning electron microscopy revealed strong differences between EP and EA gel microbeads. Phage release kinetics was tested using semi-empirical mathematical models. Experimental curve best fitted the Korsmeyer–Peppas model, predicting transport mechanisms according to the high swelling and degradation of EP. The proposed encapsulation model represents an innovative technology for phage therapy, which can be extrapolated to other therapeutic purposes, using a simple environmentally friendly synthesis procedure and cheap food-grade raw materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Misal, R., Waghmare, A., & Aquell, S. (2013). Recent advances in microencapsulation: a review. International Journal of Pharmacy and Technology, 5, 2520–2535.

    CAS  Google Scholar 

  2. Sriamornsak, P. (2011). Application of pectin in oral drug delivery. Expert Opinion on Drug Delivery, 8, 1009–1023.

    Article  CAS  Google Scholar 

  3. Lee, K. Y., & Mooney, D. J. (2012). Alginate: properties and biomedical applications. Progress in Polymer Science, 37, 106–126.

    Article  CAS  Google Scholar 

  4. Plaschina, I. G., Braudo, E. E., & Tolstoguzov, V. B. (1978). Circular-dichroism studies of pectin solutions. Carbohydrate Research, 60, 1–8.

    Article  CAS  Google Scholar 

  5. Braccini, I., & Pérez, S. (2001). Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules, 2, 1089–1096.

    Article  CAS  Google Scholar 

  6. Langer, R., & Peppas, N. A. (2003). Advances in biomaterials, drug delivery, and bionanotechnology. AIChE Journal, 49, 2990–3006.

    Article  CAS  Google Scholar 

  7. Schoener, C. A., & Peppas, N. A. (2013). Oral delivery of chemotherapeutic agents: background and potential of drug delivery systems for colon delivery. Journal of Drug Delivery Science and Technology, 22, 459–468.

    Google Scholar 

  8. Buwalda, S. J., Boere, K. W. M., Dijkstra, P. J., et al. (2014). Hydrogels in a historical perspective: from simple networks to smart materials. Journal of Controlled Release. doi:10.1016/j.jconrel.2014.03.052.

    Google Scholar 

  9. Vashist, A., Vashist, A., Gupta, Y. K., & Ahmad, S. (2014). Recent advances in hydrogel based drug delivery systems for the human body. Journal of Material Chemistry B, 2, 147–166.

    Article  CAS  Google Scholar 

  10. Dini, C., & De Urraza, P. J. (2010). Isolation and selection of coliphages as potential biocontrol agents of enterohemorrhagic and Shiga toxin-producing E. coli (EHEC and STEC) in cattle. Journal of Applied Microbiology, 109, 873–887.

    Article  CAS  Google Scholar 

  11. Dini, C., Islan, G. A., de Urraza, P. J., & Castro, G. R. (2012). Novel biopolymer matrices for microencapsulation of phages: enhanced protection against acidity and protease activity. Macromolecular Bioscience, 12, 1200–1208.

    Article  CAS  Google Scholar 

  12. Bourne, M. C., & Comstock, S. H. (1981). Effect of degree of compression on texture profile analysis. Journal of Texture Studies, 12, 201–216.

    Article  Google Scholar 

  13. Baigorí, M. D., Castro, G. R., & Siñeriz, F. (1996). Purification and characterization of an extracellular esterase from Bacillus subtilis MIR-16. Biotechnology and Applied Biochemistry, 24, 7–11.

    Google Scholar 

  14. Costa, P., & Sousa Lobo, J. M. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13, 123–133.

    Article  CAS  Google Scholar 

  15. Almeida, I. F., & Bahia, M. F. (2006). Evaluation of the physical stability of two oleogels. International Journal of Pharmaceutics, 327, 73–77.

    Article  CAS  Google Scholar 

  16. Barrangou, L. M., Drake, M., Daubert, C. R., & Foegeding, E. A. (2006). Textural properties of agarose gels. II. Relationships between rheological properties and sensory texture. Food Hydrocolloids, 20, 196–203.

    Article  CAS  Google Scholar 

  17. Foegeding, E. A. (2007). Rheology and sensory texture of biopolymer gels. Current Opinion in Colloid Interface Science, 12, 242–250.

    Article  CAS  Google Scholar 

  18. Sanderson G.R. (1990). In: Harris P (Ed.) Food Gels. Gellan Gum (pp 201–232). Elsevier Applied Food Science Series.

  19. Staniforth, J. N., Baichwal, A. R., Hart, J. P., & Heng, P. W. S. (1998). Effect of addition of water on the rheological and mechanical properties of microcrystalline celluloses. International Journal of Pharmaceutics, 41, 231–236.

    Article  Google Scholar 

  20. Castro, G. R., Bora, E., Panilaitis, B., & Kaplan, D. L. (2006). In C. Scholz & K. Khemani (Eds.), Degradable polymers and materials, vol 939 (pp 14–29). Emulsan-alginate microbeads as a new vehicle for protein delivery. Washington: ACS Symposium Series, American Chemical Society.

    Google Scholar 

  21. Shibayama, M., Ikkai, F., Inamoto, S., Nomura, S., & Han, C. C. (1996). pH and salt concentration dependence of the microstructure of poly(N‐isopropylacrylamide‐co‐acrylic acid) gels. Journal of Chemical Physics, 105, 4358–4366.

    Article  CAS  Google Scholar 

  22. Brannon-Peppas, L. and Peppas, N. A., in The equilibrium swelling behavior of porous and non-porous hygrogels. Absorbent Polymer Technology, ed. L. Brannon-Peppas and R. S. Harland. Elsevier, 1990, p. 67.

  23. Voo, W. P., Ravindra, P., Tey, B. T., & Chan, E. S. (2011). Comparison of alginate and pectin based beads for production of poultry probiotic cells. Journal of Bioscience and Bioengineering, 111, 294–299.

    Article  CAS  Google Scholar 

  24. Wang, Y. W., Wu, Q., & Chen, G. Q. (2005). Gelatin blending improves the performance of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films for biomedical application. Biomacromolecules, 6, 566–571.

    Article  CAS  Google Scholar 

  25. Thakur, B. R., Singh, R. K., Handa, A. K., & Rao, M. A. (1997). Chemistry and uses of pectin—a review. Critical Reviews in Food Science and Nutrition, 37, 47–73.

    Article  CAS  Google Scholar 

  26. Koç, M. L., Özdemir, Ü., & İmren, D. (2008). Prediction of the pH and the temperature-dependent swelling behavior of Ca2+-alginate hydrogels by artificial neural networks. Chemical Engineering Science, 63, 2913–2919.

    Article  Google Scholar 

  27. Islan, G. A., Bosio, V. E., & Castro, G. R. (2013). Alginate lyase and ciprofloxacin co‐immobilization on biopolymeric microspheres for cystic fibrosis treatment. Macromolecular Bioscience, 13, 1238–1248.

    Article  CAS  Google Scholar 

  28. Christensen, B. E. (2011). Alginates as biomaterials in tissue engineering. Carbohydrate Chemistry: Chemical and Biological Approaches, 37, 227–258.

    Google Scholar 

  29. Vandamme, T. F., Lenourry, A., Charreau, C., & Chaumeil, J. C. (2002). The use of polysaccharides to target drugs to the colon. Carbohydrate Polymers, 48, 219–231.

    Article  CAS  Google Scholar 

  30. Lin, C. C., & Metters, A. T. (2006). Hydrogels in controlled release formulations: network design and mathematical modeling. Advanced Drug Delivery Reviews, 58, 1379–1408.

    Article  CAS  Google Scholar 

  31. Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. Journal of Controlled Release, 5, 37–42.

    Article  CAS  Google Scholar 

  32. Siepmann, J., & Peppas, N. A. (2001). Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced Drug Delivery Reviews, 48, 139–157.

    Article  CAS  Google Scholar 

  33. Dash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Polonica Pharmaceutica, 67, 217–223.

    CAS  Google Scholar 

  34. Singhvi, G., & Singh, M. (2011). Review: in-vitro drug release characterization models. International Journal of Pharmaceutical Studies Research, 2, 77–84.

    Google Scholar 

  35. Pothakamury, U. R., & Barbosa-Cánovas, G. V. (1995). Fundamental aspects of controlled release in foods. Trends in Food Science and Technology, 6, 397–406.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was supported by grants of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 0214), Agencia Nacional de Promoción Científica y Técnica (ANPCyT-UNLP, PRH 5.2 and PICT2011-2116), and Universidad Nacional de La Plata (UNLP X/545) to GRC is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo R. Castro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 441 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dini, C., Islan, G.A. & Castro, G.R. Characterization and Stability Analysis of Biopolymeric Matrices Designed for Phage-Controlled Release. Appl Biochem Biotechnol 174, 2031–2047 (2014). https://doi.org/10.1007/s12010-014-1152-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1152-3

Keywords

Navigation