Skip to main content
Log in

Chromium(VI) Accumulation and Tolerance by Tradescantia pallida: Biochemical and Antioxidant Study

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Tradescantia pallida (Wandering jew)—a succulent perennial herb—was screened to be a potent chromium (Cr) accumulator. Its ability to grow under Cr stress was examined by studying biochemical changes and physiological response of the plant in presence of 5–20 mg L−1 Cr(VI) concentration in hydroponic environment for up to ca. 90 days. Average Cr(VI) bioaccumulation in plant roots reached about 408 μg g−1 dry weight (dw) after 30 days and up to 536 μg g−1dw after 60 days of culture. Biochemical changes in the plant exposed to Cr(VI) indicated a reduction in the total carbohydrate and protein content. Furthermore, lipid peroxidation, catalase, peroxidase and ascorbate peroxidase activity were measured in different parts of the plant exposed to Cr(VI). Increased activities of these enzymes showed their important role in overcoming the Cr-induced oxidative stress on the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hayat, S., Khalique, G., Irfan, M., Tripathi, B., & Ahmed, A. (2012). Physiological changes induced by chromium stress in plants: an overview. Journal of Protoplasma, 249, 599–611.

    Article  CAS  Google Scholar 

  2. Mohan, D., & Pittman, C. U., Jr. (2006). Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials, 137, 762–811.

    Article  CAS  Google Scholar 

  3. Santosh, K. P., Neelima, M., & Shivangee, S. (2012). Phytoremediation of chromium and cobalt using Pistia stratiotes: a sustainable approach. Proceedings of the International Academy of Ecology and Environmental Sciences, 2(2), 136–138.

    Google Scholar 

  4. Costa, M. (2003). Potential hazards of hexavalent chromate in our drinking water. Toxicology and Pharmacology, 188, 1–5.

    Article  CAS  Google Scholar 

  5. Kikuchi, T., & Tanaka, S. (2012). Biological removal and recovery of toxic heavy metals in water environment. Critical Reviews in Environmental Science and Technology, 42(10), 1007–1057.

    Article  CAS  Google Scholar 

  6. Gratão, P. L., Polle, A., Lea, P. J., & Azevedo, R. A. (2005). Making the live of heavy metal stressed plants a little easier Funct. Plant Biology, 32, 481–494.

    Google Scholar 

  7. Karimi, N. (2013). Comparative Phytoremediation of Chromium-Contaminated Soils by Alfalfa (Medicago sativa) and Sorghum bicolor (L) Moench. International Journal of Scientific Research in Environmental Sciences (IJSRES), 1(3), 44–49.

    Google Scholar 

  8. Mani, D., Sharma, B., Kumar, C., Pathak, N., & Balak, S. (2012). Phytoremediation potential of Helianthus annuus in sewage irrigated indo-gangetic alluvial soils. International Journal of Phytoremediation, 14(3), 235–246.

    Article  CAS  Google Scholar 

  9. Mathur, N., Singh, J., Bohra, S., & Vyas, A. (2010). Removal of chromium by some multipurpose tree seedlings of Indian Thar Desert. International Journal of Phytoremediation, 12(8), 798–804.

    Article  Google Scholar 

  10. Redondo-Gómez, Mateos-Naranjo, E., Vecino-Bueno, I., & Feldman, S. (2011). Accumulation and tolerance characteristics of chromium in a cord grass Cr-hyperaccumulator, Spartina argentinensis. Journal of Hazardous Materials, 185, 862–869.

    Article  Google Scholar 

  11. Shaw, J. (1989). Heavy metal tolerance in plants: Evolutionary aspects (p. 236). America: CRC Press.

    Google Scholar 

  12. Health, R. L., & Packer, G. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189–198.

    Article  Google Scholar 

  13. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

    Article  CAS  Google Scholar 

  14. Ambreen, S., Rehman, K., Zia, M. A., & Habib, F. (2000). Kinetic studies and partial purification of peroxidase in soybean. Pakistan Journal of Agricultural Sciences, 37(3–4), 119–122.

    Google Scholar 

  15. De Leonardis, S., Dipierro, N., & Dipierro, S. (2000). Purification and characterization of an ascorbate peroxidase from potato tuber mitochondria. Plant Physiology and Biochemistry, 38, 773–779.

    Article  Google Scholar 

  16. Raunkjer, K., Jacobsen, T. H., & Nielson, P. H. (1994). Measurement of pools of protein, carbohydrates and lipids in domestic wastewater. Water Research, 28, 251–262.

    Article  Google Scholar 

  17. Lowry, O. H., Rosenburg, J. J., Farr, A. L., & Randall, R. J. (1951). Estimation of protein with the Folin–phenol reagent. Biological Chemistry, 193, 265–270.

    CAS  Google Scholar 

  18. Vajpayee, P., Tripathi, R. D., Rai, U. N., Ali, M. B., & Singh, S. N. (2000). Chromium (VI) accumulation reduces chorophyll biosynthesis, nitrate reductase activity and protein content in Nynphaea alba L. Chemosphere, 41, 1075–1082.

    Article  CAS  Google Scholar 

  19. Suzuki, N., Koussevitzky, S., Mittler, R., & Miller, G. (2011). ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Enviroment, 35, 259–270.

    Article  Google Scholar 

  20. Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141, 391–396.

    Article  CAS  Google Scholar 

  21. Diwan, H., Ahmad, A., Iqbal, M. (2007). Genotypic variation in the phytoremediation potential of Indian mustard for chromium. Environmental Management.

  22. Dubey, R. S., & Singh, A. K. (1999). Salinity induces accumulation of soluble sugars and alters the activity of sugars metabolizing enzymes in rice plants. Biologia Plantarum, 42, 233–239.

    Article  CAS  Google Scholar 

  23. Costa, G., & Spitz, E. (1997). Influence of cadmium on soluble carbohydrates, free amino acids, protein content of in vitro cultured Lupinus albus. Plant Science, 128, 131–140.

    Article  CAS  Google Scholar 

  24. Dutton, J., & Fisher, N. S. (2011). Bioaccumulation of As, Cd, Cr, Hg(II), and Me Hg in killifish (Fundulus heteroclitus) from amphipod and worm prey. Science of the Total Environment, 409(18), 3438–3447.

    Article  CAS  Google Scholar 

  25. Braud, A., Jezequel, K., Bazot, S., & Lebeau, T. (2009). Enhanced phytoextraction of an agricultural Cr and Pb contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere, 74, 280–286.

    Article  Google Scholar 

  26. Mohanty, M., Pattnaik, M. M., Mishra, A. K., & Patra, H. K. (2012). Bio-concentration of chromium—an in situ phytoremediation study at South Kaliapani chromite mining area of Orissa, India. Environmental Monitoring and Assessment, 184(2), 1015–1024.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Biotechnology, Indian Institute of Technology Guwahati, for providing the necessary facilities to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannan Pakshirajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, V., Pakshirajan, K. & Chaturvedi, R. Chromium(VI) Accumulation and Tolerance by Tradescantia pallida: Biochemical and Antioxidant Study. Appl Biochem Biotechnol 173, 2297–2306 (2014). https://doi.org/10.1007/s12010-014-1035-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1035-7

Keywords

Navigation