Skip to main content
Log in

Production of Indirubin from Tryptophan by Recombinant Escherichia coli Containing Naphthalene Dioxygenase Genes from Comamonas sp. MQ

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Indirubin, a red isomer of indigo, can be used for the treatment of various chronic diseases. However, the microbial production of indirubin did not receive much attention probably due to its low yield compared with indigo. In this study, the recombinant Escherichia coli containing the naphthalene dioxygenase (NDO) genes from Comamonas sp. MQ was used to produce indirubin from tryptophan. To enhance the production of indirubin, the induction conditions for NDO expression were optimized. The optimal induction conditions were carried out with 0.5 mM isopropyl-β-d-thiogalactopyranoside at 30 °C when cells were grown to OD600 ≈ 1.20. Subsequently, the effects of medium composition on indirubin production were investigated by response surface methodology, and 9.37 ± 1.01 mg/l indirubin was produced from 3.28 g/l tryptophan. Meanwhile, the indirubin production was further improved by adding 2-oxindole and isatin to the tryptophan medium after induction. About 57.98 ± 2.62 mg/l indirubin was obtained by the addition of 500 mg/l 2-oxindole after 1-h induction, which was approximately 6.2-fold to that without additional 2-oxindole. The present study provided a possible way to improve the production of indirubin and should lay the foundation for the application of microbial indirubin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berry, A., Dodge, T. C., Pepsin, M., & Weyler, W. (2002). Journal of Industrial Microbiology and Biotechnology, 28, 127–133.

    Article  CAS  Google Scholar 

  2. Hoessel, R., Leclerc, S., Endicott, J. A., Nobel, M. E., Lawrie, A., Tunnah, P., et al. (1999). Nature Cell Biology, 1, 60–67.

    Article  CAS  Google Scholar 

  3. Leclerc, S., Garnier, M., Hoessel, R., Marko, D., Bibb, J. A., Snyder, G. L., et al. (2001). Journal of Biological Chemistry, 276, 251–260.

    Article  CAS  Google Scholar 

  4. Spink, B. C., Hussain, M. M., Katz, B. H., Eisele, L., & Spink, D. C. (2003). Biochemical Pharmacology, 66, 2313–2321.

    Article  CAS  Google Scholar 

  5. Zhang, A. J., Qu, Y. Y., Zhang, B. J., Zhang, L. J., Zeng, C., Peng, J. X., et al. (2007). Journal of Molecular Medicine, 85, 1263–1270.

    Article  CAS  Google Scholar 

  6. Meyer, A., Würsten, M., Schmid, A., Kohler, H. P., & Witholt, B. (2002). Journal of Biological Chemistry, 277, 34161–34167.

    Article  CAS  Google Scholar 

  7. Lee, J. Y., Shin, Y. S., Shin, H. J., & Kim, G. J. (2011). Bioresource Technology, 102, 9193–9198.

    Article  CAS  Google Scholar 

  8. Han, G. H., Gim, G. H., Kim, W., Seo, S. I., & Kim, S. W. (2012). Journal of Biotechnology, 164, 179–187.

    Article  CAS  Google Scholar 

  9. Ensley, B. D., Ratzkin, B. J., Osslund, T. D., Simon, M. J., Wackett, L. P., & Gibson, D. T. (1983). Science, 222, 167–169.

    Article  CAS  Google Scholar 

  10. Gillam, E. M., Notley, L. M., Cai, H., De Voss, J. J., & Guengerich, F. P. (2000). Biochemistry, 39, 13817–13824.

    Article  CAS  Google Scholar 

  11. Doukyu, N., Toyoda, K., & Aono, R. (2003). Applied Microbiology and Biotechnology, 60, 720–725.

    Article  CAS  Google Scholar 

  12. Choi, H. S., Kim, J. K., Cho, E. H., Kim, Y. C., Kim, J. I., & Kim, S. W. (2003). Biochemical and Biophysical Research Communications, 306, 930–936.

    Article  CAS  Google Scholar 

  13. Rui, L., Reardon, K. F., & Wood, T. K. (2005). Applied Microbiology and Biotechnology, 66, 422–429.

    Article  CAS  Google Scholar 

  14. Pathak, H., & Madamwar, D. (2010). Applied Biochemistry and Biotechnology, 160, 1616–1626.

    Article  CAS  Google Scholar 

  15. Eaton, R. W., & Chapman, P. J. (1995). Journal of Bacteriology, 177, 6983–6988.

    CAS  Google Scholar 

  16. McClay, K., Boss, C., Keresztes, I., & Steffan, R. J. (2005). Applied and Environmental Microbiology, 71, 5476–5483.

    Article  CAS  Google Scholar 

  17. Maugard, T., Enaud, E., Choisy, P., & Legoy, M. D. (2001). Phytochemistry, 58, 897–904.

    Article  CAS  Google Scholar 

  18. Qu, Y. Y., Zhang, X. W., Ma, Q., Ma, F., Zhang, Q., Li, X. L., et al. (2012). Biotechnological Letters, 34, 353–357.

    Article  CAS  Google Scholar 

  19. Lu, Y., & Mei, L. H. (2007). Journal of Industrial Microbiology and Biotechnology, 34, 247–253.

    Article  CAS  Google Scholar 

  20. Prakash, D., Pandey, J., Tiwary, B. N., & Jain, R. K. (2010). BMC Biotechnology, 10, 49.

    Article  CAS  Google Scholar 

  21. Zhang, Q., Qu, Y. Y., Zhou, J. T., Zhang, X. W., Zhou, H., Ma, Q., et al. (2011). Bioresource Technology, 102, 10553–10560.

    Article  CAS  Google Scholar 

  22. Liu, J. F., Zhang, Z. J., Li, A. T., Pan, J., & Xu, J. H. (2011). Applied Microbiology and Biotechnology, 89, 665–672.

    Article  CAS  Google Scholar 

  23. Zhang, X. W., Qu, Y. Y., Ma, Q., Zhou, H., Li, X. L., Kong, C. L., et al. (2013). Process Biochemistry, 48, 581–587.

    Article  CAS  Google Scholar 

  24. Han, G. H., Bang, S. E., Babu, B. K., Chang, M., Shin, H. J., & Kim, S. W. (2011). Process Biochemistry, 46, 788–791.

    Article  CAS  Google Scholar 

  25. Pan, H. F., Xie, Z. P., Bao, W. N., & Zhang, J. G. (2008). Biochemical Engineering Journal, 42, 133–138.

    Article  CAS  Google Scholar 

  26. Ghosh, D., & Hallenbeck, P. C. (2010). Bioresource Technology, 101, 1820–1825.

    Article  CAS  Google Scholar 

  27. Shi, S. N., Ma, F., Sun, T. H., Li, A., Zhou, J. T., & Qu, Y. Y. (2013). Applied Biochemistry and Biotechnology, 169, 1088–1097.

    Article  CAS  Google Scholar 

  28. Shi, S. N., Ma, F., Sun, T. H., Li, A., Zhou, J. T., & Qu, Y. Y. (2013). Applied Biochemistry and Biotechnology, 170, 951–961.

    Article  CAS  Google Scholar 

  29. Han, G. H., Shin, H. J., & Kim, S. W. (2008). Enzyme and Microbial Technology, 42, 617–623.

    Article  CAS  Google Scholar 

  30. Qu, Y. Y., Shi, S. N., Zhou, H., Ma, Q., Li, X. L., Zhang, X. W., et al. (2012). PLoS One, 7, e44313.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (No. 21176040) and the Program for New Century Excellent Talents in University (No. NCET-13-0077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Qu, Y., Ma, Q. et al. Production of Indirubin from Tryptophan by Recombinant Escherichia coli Containing Naphthalene Dioxygenase Genes from Comamonas sp. MQ. Appl Biochem Biotechnol 172, 3194–3206 (2014). https://doi.org/10.1007/s12010-014-0743-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0743-3

Keywords

Navigation