Skip to main content
Log in

Effect of Chaotropes on Lipase Back Extraction Recovery in the Process of Reverse Micellar Extraction

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Chaotropes could significantly enhance lipase activity recovery in reverse micellar back extraction. However, the mechanism of chaotropes promoting the release of enzyme from reverse micelles was not clear. In this study, chaotropes were added in the process of lipase reverse micellar extraction, and back extraction recovery was improved. In back extraction, at 0.6 M urea in stripping solution, 94.60 % total extraction recovery was obtained. Meanwhile at 0.3 M guanidine hydrochloride, nearly 65 % lipases were released into the stripping solution. DLS and Karl Fischer method results showed that the presence of urea in stripping solution could weaken the electrostatic interaction between lipase and cetyltrimethylammonium bromide molecules, promoting lipase release from reverse micelles, and guanidine hydrochloride could stimulate lipase and free water molecules enwrapped in reverse micelle release into the stripping solution. These experimental results provide a clue for understanding the mechanism of chaotropes influencing on protein recovery in reverse micelle back extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mendes, A. A., & Oliveira, P. C. (2012). Journal of Molecular Catalysis B: Enzymatic, 78, 119–134.

    Article  CAS  Google Scholar 

  2. Giovenco, S., Verheggen, F., & Laane, C. (1987). Enzyme and Microbial Technology, 9, 470–473.

    Article  CAS  Google Scholar 

  3. Noritomi, H., Hidaka, Y., Kato, S., & Nagahama, K. (1999). Biotechnology Techniques, 13, 181–183.

    Article  CAS  Google Scholar 

  4. Shin, Y. O., Weber, M. E., & Vera, J. H. (2003). Separation Science and Technology, 38, 1733–1748.

    Article  CAS  Google Scholar 

  5. Jarudilokkul, S., Poppenborg, L. H., & Stuckey, D. C. (1999). Biotechnology and Bioengineering, 62, 593–601.

    Article  CAS  Google Scholar 

  6. Zhang, W., Liu, H. Z., & Chen, J. Y. (2002). Biochemical Engineering Journal, 12, 1–5.

    Article  Google Scholar 

  7. Chen, L. J., & Cao, X. J. (2007). Journal of Chemical Engineering of Japan, 40, 511–515.

    Article  CAS  Google Scholar 

  8. Nagayama, K., Nishimura, R., & Doi, T. (1999). Journal of Chemical Technology and Biotechnology, 74, 227–230.

    Article  CAS  Google Scholar 

  9. Naoe, K., Murata, M., One, C., & Kawagoe, M. (2002). Biochemical Engineering Journal, 10, 137–142.

    Article  CAS  Google Scholar 

  10. Zhou, B., Wan, J. F., Wang, J. Z., & Cao, X. J. (2012). Process Biochemistry, 47, 229–233.

    Article  CAS  Google Scholar 

  11. Stoytcheva, M., Montero, G., & Zlatev, R. (2012). Current Analytical Chemistry, 8, 400–407.

    Article  CAS  Google Scholar 

  12. Naoe, K., Takeuchi, C., Kawagoe, M., Nagayama, K., & Imai, M. (2007). Journal of Chromatography B, 850, 277–284.

    Article  CAS  Google Scholar 

  13. Gaikaiwari, R. P., Wagh, S. A., & Kulkarni, B. D. (2012). Bioresource Technology, 108, 224–230.

    Article  CAS  Google Scholar 

  14. Zhou, H. T., Lin, S. S., & Xing, H. (2013). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 416, 16–22.

    Article  CAS  Google Scholar 

  15. Calvaruso, G., Minore, A., & Liveri, V. T. (2001). Journal of Colloid and Interface Science, 243, 227–232.

    Article  CAS  Google Scholar 

  16. Dias, L. G., Florenzano, F. H., & Reed, W. F. (2002). Langmuir, 18, 319–324.

    Article  CAS  Google Scholar 

  17. Li, Q., Hu, X. L., Ma, S. Y., & Politi, M. J. (2002). Acta Chimica Sinica, 60, 438–445.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (no. 20976052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, T., Cao, X. Effect of Chaotropes on Lipase Back Extraction Recovery in the Process of Reverse Micellar Extraction. Appl Biochem Biotechnol 172, 3287–3296 (2014). https://doi.org/10.1007/s12010-014-0738-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0738-0

Keywords

Navigation