Skip to main content
Log in

Enhanced Organic Solvent Tolerance of Escherichia coli by 3-Hydroxyacid Dehydrogenase Family Genes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A 3-hydroxyisobutyrate dehydrogenase-encoding gene mmsB has been identified as one of the key genes responsible for the enhanced organic solvent tolerance (OST) of Pseudomonas putida JUCT1. In this study, the OST-related effect of two 3-hydroxyacid dehydrogenase family genes (mmsB and zwf) was investigated in Escherichia coli JM109. It was noted that the growth of E. coli JM109 was severely hampered in 4 % decalin after zwf knockout. Additionally, its complementation resulted in significantly enhanced solvent tolerance compared with its parent strain. Furthermore, E. coli JM109 carrying mmsB showed better OST capacity than that harboring zwf. To construct E. coli strains with an inheritable OST phenotype, mmsB was integrated into the genome of E. coli JM109 by red-mediated recombination. Using E. coli JM109(DE3) (ΔendA::mmsB) as host strain, whole-cell biocatalysis was successfully carried out in an aqueous/butyl acetate biphasic system with a remarkably improved product yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sardessai, Y., & Bhosle, S. (2002). Tolerance of bacteria to organic solvents. Research in Microbiology, 153, 263–268.

    Article  CAS  Google Scholar 

  2. Aono, R., Aibe, K., Inoue, A., et al. (1991). Preparation of organic solvent-tolerant mutants from Escherichia coli K-12. Agricultural and Biological Chemistry, 55, 1935–1938.

    Article  CAS  Google Scholar 

  3. Inoue, A., & Horikoshi, K. (1989). A Pseudomonas thrives in high concentrations of toluene. Nature, 338, 264–266.

    Article  CAS  Google Scholar 

  4. Hansch, C., & Fujita, T. (1964). p-σ-π Analysis. A method for the correlation of biological activity and chemical structure. Journal of the American Chemical Society, 86, 1616–1626.

    Article  CAS  Google Scholar 

  5. Hansch, C., Muir, R. M., Fujita, T., et al. (1963). The correlation of biological activity of plant growth regulators and chloromycetin derivatives with Hammett constants and partition coefficients. Journal of the American Chemical Society, 85, 2817–2824.

    Article  CAS  Google Scholar 

  6. Inoue, A., & Horikoshi, K. (1991). Estimation of solvent-tolerance of bacteria by the solvent parameter log P. Journal of Fermentation and Bioengineering, 71, 194–196.

    Article  CAS  Google Scholar 

  7. Gokhale, D. V., Bastawde, K. B., Patil, S. G., et al. (1996). Chemoenzymatic synthesis of d(−)phenylglycine using hydantoinase of Pseudomonas desmolyticum resting cells. Enzyme and Microbial Technology, 18, 353–357.

    Article  CAS  Google Scholar 

  8. Wagner, T., Hantke, B., & Wagner, F. (1996). Production of l-methionine from d,l-5-(2-methylthioethyl) hydantoin by resting cells of a new mutant strain of Arthrobacter species DSM 7330. Journal of Biotechnology, 46, 63–68.

    Article  CAS  Google Scholar 

  9. Shu, Z. Y., Wu, J. G., Cheng, L. X., Chen, D., Jiang, Y. M., Li, X., et al. (2012). Production and characteristics of the whole-cell lipase from organic solvent tolerant Burkholderia sp. ZYB002. Applied Biochemistry and Biotechnology, 166, 536–548.

    Article  CAS  Google Scholar 

  10. Gu, M. Z., Wang, J. C., Liu, W. B., et al. (2013). Expression and displaying of β-glucosidase from Streptomyces coelicolor A3 in Escherichia coli. Applied Biochemistry and Biotechnology, 170, 1713–1723.

    Article  CAS  Google Scholar 

  11. Ni, Y., Song, L., Qian, X., & Sun, Z. (2013). Proteomic analysis of Pseudomonas putida reveals an organic solvent tolerance-related gene mmsB. PloS one, 8, e55858.

    Article  CAS  Google Scholar 

  12. Hawes, J. W., Harper, E. T., Crabb, D. W., & Harris, R. A. (1996). Structural and mechanistic similarities of 6-phosphogluconate and 3-hydroxyisobutyrate dehydrogenases reveal a new enzyme family, the 3-hydroxyacid dehydrogenases. FEBS Letters, 389, 263–267.

    Article  CAS  Google Scholar 

  13. Koma, D., Yamanaka, H., Moriyoshi, K., et al. (2012). A convenient method for multiple insertions of desired genes into target loci on the Escherichia coli chromosome. Applied Microbiology and Biotechnology, 93, 815–829.

    Article  CAS  Google Scholar 

  14. Baba, T., Ara, T., Hasegawa, M., et al. (2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular Systems Biology, 2.

  15. Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences, 97, 6640–6645.

    Article  CAS  Google Scholar 

  16. Li, H., Sun, Z., & Ni, Y. (2013). Novel stereoselective carbonyl reductase from Kluyveromyces marxianus for chiral alcohols synthesis. Chemical Research in Chinese Universities, 29, 1140–1148.

    Article  CAS  Google Scholar 

  17. Walker, J. M. (1996). The protein protocols handbook (2nd ed.). Totowa, NJ: Humana.

    Book  Google Scholar 

  18. Aono, R., Tsukagoshi, N., & Yamamoto, M. (1998). Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. Journal of Bacteriology, 180, 938–944.

    CAS  Google Scholar 

  19. Heipieper, H. J., Weber, F. J., Sikkema, J., Keweloh, H., & de Bont, J. A. (1994). Mechanisms of resistance of whole cells to toxic organic solvents. Trends in Biotechnology, 12, 409–415.

    Article  CAS  Google Scholar 

  20. Becker, J., Klopprogge, C., Herold, A., Zelder, O., Bolten, C. J., & Wittmann, C. (2007). Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum—over expression and modification of G6P dehydrogenase. Journal of Biotechnology, 132, 99–109.

    Article  CAS  Google Scholar 

  21. Reyes, L. H., Almario, M. P., & Kao, K. C. (2011). Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli. PloS one, 6, e17678.

    Article  CAS  Google Scholar 

  22. Chowdhury, E. K., Akaishi, Y., Nagata, S., & Misono, H. (2003). Cloning and overexpression of the 3-hydroxyisobutyrate dehydrogenase gene from Pseudomonas putida E23. Bioscience, Biotechnology, and Biochemistry, 67, 438–441.

    Article  CAS  Google Scholar 

  23. Peredelchuk, M. Y., & Bennett, G. N. (1997). A method for construction of E. coli strains with multiple DNA insertions in the chromosome. Gene, 187, 231–238.

    Article  CAS  Google Scholar 

  24. Bailey, J. E., Da Silva, N. A., Peretti, S. W., et al. (1986). Studies of host–plasmid interactions in recombinant microorganisms. Annals of the New York Academy of Sciences, 469, 194–211.

    Article  CAS  Google Scholar 

  25. Diaz Ricci, J. C., & Hernández, M. E. (2000). Plasmid effects on Escherichia coli metabolism. Critical Reviews in Biotechnology, 20, 79–108.

    Article  CAS  Google Scholar 

  26. Jones, K. L., & Keasling, J. D. (1998). Construction and characterization of F plasmid-based expression vectors. Biotechnology and Bioengineering, 59, 659–665.

    Article  CAS  Google Scholar 

  27. Jones, K. L., Kim, S. W., & Keasling, J. D. (2000). Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metabolic Engineering, 2, 328–338.

    Article  CAS  Google Scholar 

  28. Wang, Z., Xiang, L., Shao, J., et al. (2006). Effects of the presence of ColE1 plasmid DNA in Escherichia coli on the host cell metabolism. Microbial Cell Factories, 5, 34.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Natural Science Foundation of China (21276112), National Basic Research and Development Program of China (973 Program, 2011CB710800), New Century Excellent Talents in University (NCET-11-0658), Natural Science Foundation of Jiangsu Province (BK2011150), the Program of Introducing Talents of Discipline to Universities (111-2-06), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Ni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, X., Song, L. & Ni, Y. Enhanced Organic Solvent Tolerance of Escherichia coli by 3-Hydroxyacid Dehydrogenase Family Genes. Appl Biochem Biotechnol 172, 3106–3115 (2014). https://doi.org/10.1007/s12010-014-0726-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0726-4

Keywords

Navigation