Skip to main content
Log in

Thidiazuron-Induced Changes in Biomass Parameters, Total Phenolic Content, and Antioxidant Activity in Callus Cultures of Artemisia absinthium L.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Callus culture of Artemisia absinthium L. was established for enhanced production of phenolics and higher antioxidant activity. Callus was induced from seed-derived leaf explants, incubated on to MS media supplemented with thidiazuron (TDZ; 0.5–5.0 mg/l) either alone or in combination with α-naphthalene acetic acid (NAA; 1.0 mg/l). These callus cultures were investigated for their growth kinetics, total phenolic content, and antioxidant activity on weekly basis for a period of 49 days. Maximum dry biomass accumulation of 8.73 g/l was observed on day 42 in response to 1.0 mg/l TDZ and 1.0 mg/l NAA. Furthermore, maximum level of total phenolic content of 8.53 mg GAE/g DW and highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of 72.6 % were observed in calli formed in response to 1.0 mg/l TDZ on day 42. The results showed a positive correlation of total phenolic content and DPPH radical scavenging activity in most of the callus cultures of A. absinthium L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Krebs, S., Omer, T. N., & Omer, B. (2010). Phytomedicine, 17(5), 305–309.

    Article  CAS  Google Scholar 

  2. Singh, R., Verma, P. K., & Singh, G. (2012). Journal of Intercultural Ethnopharmacology, 1(2), 101–104.

    Article  Google Scholar 

  3. Kordali, S., Kotan, R., Mavi, A., Cakir, A., Ala, A., & Yildirim, A. (2005). Journal of Agricultural and Food Chemistry, 53(24), 9452–9458.

    Article  CAS  Google Scholar 

  4. Canadanovic‐Brunet, J. M., Djilas, S. M., Cetkovic, G. S., & Tumbas, V. T. (2005). Journal of the Science of Food and Agriculture, 85(2), 265–272.

    Article  CAS  Google Scholar 

  5. Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Biotechnology Advances, 23(4), 283–333.

    Article  CAS  Google Scholar 

  6. Cieśla, L., Kowalska, I., Oleszek, W., & Stochmal, A. (2013). Phytochemical Analysis, 24(1), 47–52.

    Article  CAS  Google Scholar 

  7. Lai, H., & Singh, N. P. (2006). Cancer Letters, 231(1), 43–48.

    Article  CAS  Google Scholar 

  8. Sun, J., Chu, Y. F., Wu, X., & Liu, R. H. (2002). Journal of Agricultural and Food Chemistry, 50(25), 7449–7454.

    Article  CAS  Google Scholar 

  9. Rice-evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M., & Pridham, J. B. (1995). Free Radical Research, 22(4), 375–383.

    Article  CAS  Google Scholar 

  10. Hussain, M. S., Fareed, S., Saba Ansari, M., Rahman, A., Ahmad, I. Z., & Saeed, M. (2012). Journal of Pharmacy & Bio Allied Sciences, 4(1), 10.

    Article  Google Scholar 

  11. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15(3), 473–497.

    Article  CAS  Google Scholar 

  12. Ali, M., Abbasi, B. H., & Ihsan-ul-haq, A. (2013). Industrial Crops and Products, 49, 400–406.

    Article  CAS  Google Scholar 

  13. Velioglu, Y. S., Mazza, G., Gao, L., & Oomah, B. D. (1998). Journal of Agricultural and Food Chemistry, 46(10), 4113–4117.

    Article  CAS  Google Scholar 

  14. Abbasi, B. H., Khan, M. A., Mahmood, T., Ahmad, M., Chaudhary, M. F., & Khan, M. A. (2010). Plant Cell Tissue and Organ Culture (PCTOC), 101(3), 371–376.

    Article  CAS  Google Scholar 

  15. Nin, S., Bennici, A., Roselli, G., Mariotti, D., Schiff, S., & Magherini, R. (1997). Plant Cell Reports, 16(10), 725–730.

    Article  CAS  Google Scholar 

  16. Zia, M., Mannan, A., & Chaudhary, M. F. (2007). Pakistan Journal of Botany, 39.

  17. Zia, M., Rehman, R., & Chaudhary, M. F. (2007). African Journal of Biotechnology, 6(16).

  18. Rasool, R., Ganai, B. A., Kamili, A. N., & Akbar, S. (2012). Natural Product Research, 26(22), 2103–2106.

    CAS  Google Scholar 

  19. Danya, U., Udhayasankar, M. R., Punitha, D., Arumugasamy, K., & Suresh, S. N. (2012). International Journal of Plant, Animal and Environmental Sciences, 2(4).

  20. Abbasi, B. H., Khan, M., Guo, B., Bokhari, S. A., & Khan, M. A. (2011). Plant Cell Tissue and Organ Culture (PCTOC), 105(3), 337–344.

    Article  CAS  Google Scholar 

  21. Erişen, S., Atalay, E., & Yorgancılar, M. (2011). Turkish Journal of Botany, 35, 521–526.

    Google Scholar 

  22. Yorgancilar, M., & Erisen, S. (2011). Journal of Animal and Plant Sciences, 21.

  23. Huan, L. V. T., Takamura, T., & Tanaka, M. (2004). Plant Science, 166(6), 1443–1449.

    Article  CAS  Google Scholar 

  24. Murthy, B. N. S., Murch, S. J., & Saxena, P. K. (1998). In Vitro Cellular & Developmental Biology-Plant, 34(4), 267–275.

    Article  CAS  Google Scholar 

  25. Schulze, J. (2007). Fruit Vegetable Cereal Sci Biotechnol, 1, 64–79.

    Google Scholar 

  26. Huetteman, C. A., & Preece, J. E. (1993). Plant Cell, Tissue and Organ Culture, 33(2), 105–119.

    Article  CAS  Google Scholar 

  27. Chen, X. Y., Ye, Q. S., & Liu, W. (2003). Subtropical Plant Science, 3, 015.

    Google Scholar 

  28. Nabila, S. K., Fawzia, M. J., Naser, A. A., & Rida, A. S. (2003). Plant cell, Tissue and Organ Culture, 73(2), 117–121.

    Article  Google Scholar 

  29. Jayasinghe, C., Gotoh, N., Aoki, T., & Wada, S. (2003). Journal of Agricultural and Food Chemistry, 51(15), 4442–4449.

    Article  CAS  Google Scholar 

  30. Ali, M. B., Khatun, S., Hahn, E. J., & Paek, K. Y. (2006). Plant Growth Regulation, 49(2–3), 137–146.

    Article  CAS  Google Scholar 

  31. Kim, H. J., Chen, F., Wang, X., & Choi, J. H. (2006). Journal of Agricultural and Food Chemistry, 54(19), 7263–7269.

    Article  CAS  Google Scholar 

  32. Ali, M. B., Hahn, E. J., & Paek, K. Y. (2007). Molecules, 12(3), 607–621.

    Article  CAS  Google Scholar 

  33. Roby, M. H. H., Sarhan, M. A., Selim, K. A., & Khalel, K. I. (2013). Industrial Crops and Products, 43, 827–831.

    Article  CAS  Google Scholar 

  34. Schmeda-Hirschmann, G., Jordan, M., Gerth, A., & Wilken, D. (2005). Zeitschrift für Naturforschung, 60(1–2), 5–10.

    CAS  Google Scholar 

  35. Naz, S., Ali, A., & Iqbal, J. (2008). Pakistan Journal of Botany, 40(6), 2525–2539.

    CAS  Google Scholar 

  36. Giri, L., Dhyani, P., Rawat, S., Bhatt, I. D., Nandi, S. K., Rawal, R. S., & Pande, V. (2012). Industrial Crops and Products, 39, 1–6.

    Article  CAS  Google Scholar 

  37. Amid, A., Johan, N. N., Jamal, P., & Zain, W. N. W. M. (2011). African Journal of Biotechnology, 10(81), 18653–18656.

    CAS  Google Scholar 

  38. Al Khateeb, W., Hussein, E., Qouta, L., Aludatt, M., Al-Shara, B., & Abu-zaiton, A. (2012). Plant Cell Tissue and Organ Culture (PCTOC), 110(1), 103–110.

    Article  CAS  Google Scholar 

  39. Diwan, R., Shinde, A., & Malpathak, N. (2012). Journal of Botany. doi:10.1155/2012/685427.

    Google Scholar 

Download references

Acknowledgments

Financial support from Higher Education Commission (HEC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Haider Abbasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, M., Abbasi, B.H. Thidiazuron-Induced Changes in Biomass Parameters, Total Phenolic Content, and Antioxidant Activity in Callus Cultures of Artemisia absinthium L.. Appl Biochem Biotechnol 172, 2363–2376 (2014). https://doi.org/10.1007/s12010-013-0663-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0663-7

Keywords

Navigation