Skip to main content
Log in

An Ancestral Member of the Polysaccharide Lyase Family 2 Displays Endolytic Activity and Magnesium Dependence

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Polysaccharide lyases (PLs) are enzymes that cleave glycosidic linkages in hexuronate polysaccharides, such as homogalacturonan (HG), using a β-elimination mechanism. Traditionally, PL activities on HG have been associated with catalytic calcium cofactors, unusually high pH optima, and arginine Brønstead bases. Recently, however, PL families that harness transition metal cofactors, utilize lysine and histidine Brønstead bases, and display more neutral pH optima have been described. One such family is PL2, which has members found primarily in phytopathogenic (e.g., Dickeya spp. and Pectobacterium spp.) or enteropathogenic (e.g., Yersinia spp.) bacterial species. PL2 is divided into two major subfamilies that are correlated with either an endolytic or exolytic activity. This study has focused on the activity of a PL2 member, which is not classified within either subfamily and helps to illuminate the origin of enzyme activities within the family. In addition, the role of Mg2+ as a preferential catalytic metal for an intracellular PL2 (PaePL2) is described. The implications for the relationship between catalytic metal selectivity and the cellular location of pectate lyase-mediated catalysis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Caffall, K. H., & Mohnen, D. (2009). Carbohydrate Research, 344, 1879–1900.

    Article  CAS  Google Scholar 

  2. Payasi, A., Mishra, N. N., Chaves, A. L., & Singh, R. (2009). Physiology and Molecular Biology of Plants, 15, 103–113.

    Article  CAS  Google Scholar 

  3. Galletti, R., De Lorenzo, G., & Ferrari, S. (2009). Plant Signaling and Behavior, 4, 33–34.

    Article  CAS  Google Scholar 

  4. Mohnen, D. (2008). Current Opinion in Plant Biology, 11, 266–277.

    Article  CAS  Google Scholar 

  5. O’Neill, M. A., Ishii, T., Albersheim, P., & Darvill, A. G. (2004). Annual Review of Plant Biology, 55, 109–139.

    Article  Google Scholar 

  6. Khan, M., Nakkeeran, E., & Umesh-Kumar, S. (2013). Annual Review of Food Science and Technology, 4, 21–34.

    Article  CAS  Google Scholar 

  7. Garron, M. L., & Cygler, M. (2010). Glycobiology, 20, 1547–1573.

    Article  CAS  Google Scholar 

  8. Lombard, V., Bernard, T., Rancurel, C., et al. (2010). The Biochemical Journal, 432, 437–444.

    Article  CAS  Google Scholar 

  9. Abbott, D. W., & Boraston, A. B. (2008). Microbiology and Molecular Biology Reviews, 72, 301–316. table of contents.

    Article  CAS  Google Scholar 

  10. Abbott, D. W., Gilbert, H. J., & Boraston, A. B. (2010). The Journal of Biological Chemistry, 285, 39029–39038.

    Article  CAS  Google Scholar 

  11. Cantarel, B. L., Coutinho, P. M., Rancurel, C., et al. (2009). Nucleic Acids Research, 37, D233–D238.

    Article  CAS  Google Scholar 

  12. Shevchik, V. E., Condemine, G., Robert-Baudouy, J., & Hugouvieux-Cotte-Pattat, N. (1999). Journal of Bacteriology, 181, 3912–3919.

    CAS  Google Scholar 

  13. Trollinger, D., Berry, S., Belser, W., & Keen, N. T. (1989). Molecular Plant–Microbe Interactions, 2, 17–25.

    Article  CAS  Google Scholar 

  14. Hinton, J. C., Sidebotham, J. M., Gill, D. R., & Salmond, G. P. (1989). Molecular Microbiology, 3, 1785–1795.

    Article  CAS  Google Scholar 

  15. Abbott, D. W., & Boraston, A. B. (2007). The Journal of Biological Chemistry, 282, 35328–35336.

    Article  CAS  Google Scholar 

  16. Manulis, S., Kobayashi, D. Y., & Keen, N. T. (1988). Journal of Bacteriology, 170, 1825–1830.

    CAS  Google Scholar 

  17. Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). Nature Methods, 8, 785–786.

    Article  CAS  Google Scholar 

  18. Mead, D. A., Lucas, S., Copeland, A., et al. (2012). Standards in Genomic sciences, 6, 381–400.

    Article  Google Scholar 

  19. Rodionov, D. A., Gelfand, M. S., & Hugouvieux-Cotte-Pattat, N. (2004). Microbiology (Reading, England), 150, 3571–3590.

    Article  CAS  Google Scholar 

  20. Boraston, A. B., & Abbott, D. W. (2012). Acta Crystallographica, Section F, Structural Biology and Crystallization Communications, 68, 129–133.

    Article  CAS  Google Scholar 

  21. Tardy, F., Nasser, W., Robert-Baudouy, J., & Hugouvieux-Cotte-Pattat, N. (1997). Journal of Bacteriology, 179, 2503–2511.

    CAS  Google Scholar 

  22. Guillen Schlippe, Y. V., & Hedstrom, L. (2005). Archives of Biochemistry and Biophysics, 433, 266–278.

    Article  CAS  Google Scholar 

  23. Gangola, P., & Rosen, B. P. (1987). The Journal of Biological Chemistry, 262, 12570–12574.

    CAS  Google Scholar 

  24. Harding, M. M. (2001). Acta Crystallographica, Section D, Biological Crystallography, 57, 401–411.

    Article  CAS  Google Scholar 

  25. Kuppuraj, G., Dudev, M., & Lim, C. (2009). The Journal of Physical Chemistry B, 113, 2952–2960.

    Article  CAS  Google Scholar 

  26. Levitsky, D. O., & Takahashi, M. (2013). Advances in Experimental Medicine and Biology, 961, 65–78.

    Article  CAS  Google Scholar 

  27. Davies, G. J., Wilson, K. S., & Henrissat, B. (1997). The Biochemical Journal, 321(Pt 2), 557–559.

    CAS  Google Scholar 

  28. Sprockett, D. D., Piontkivska, H., & Blackwood, C. B. (2011). Gene, 479, 29–36.

    Article  CAS  Google Scholar 

  29. Markovic, O., & Janecek, S. (2001). Protein Engineering, 14, 615–631.

    Article  CAS  Google Scholar 

  30. Edgar, R. C. (2004). Nucleic Acids Research, 32, 1792–1797.

    Article  CAS  Google Scholar 

  31. Abascal, F., Zardoya, R., & Posada, D. (2005). Bioinformatics (Oxford, England), 21, 2104–2105.

    Article  CAS  Google Scholar 

  32. Stamatakis, A. (2006). Bioinformatics (Oxford, England), 22, 2688–2690.

    Article  CAS  Google Scholar 

  33. Gasteiger, E. H. C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D. and Bairoch, A, “Protein identification and analysis tools on the ExPASy server.” In J. M. Walker (Ed.) The Proteomics Protocols Handbook. Humana, 2005, pp. 571–607

  34. Xiao, Z., Bergeron, H., Grosse, S., et al. (2008). Applied and Environmental Microbiology, 74, 1183–1189.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a grant from the Agriculture and Agri-Food Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Wade Abbott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbott, D.W., Thomas, D., Pluvinage, B. et al. An Ancestral Member of the Polysaccharide Lyase Family 2 Displays Endolytic Activity and Magnesium Dependence. Appl Biochem Biotechnol 171, 1911–1923 (2013). https://doi.org/10.1007/s12010-013-0483-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0483-9

Keywords

Navigation