Skip to main content
Log in

Cultured Preadipocytes Undergoing Stable Transfection with Cyclooxygenase-1 in the Antisense Direction Accelerate Adipogenesis During the Maturation Phase of Adipocytes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The arachidonate cyclooxygenase (COX) pathway is involved in the generation of several types of endogenous prostaglandins (PGs) with opposite effects on adipogenesis at different life stages of adipocytes. However, the specific role of COX isoforms, the rate-limiting enzymes for the pathway, remains elusive in the regulation of the endogenous synthesis of PGs. This study was aimed at the selective suppression of the constitutive COX-1 in cultured preadipocytes by the isolation of cloned preadipocytes transfected stably with a mammalian expression vector harboring cDNA encoding mouse COX-1 in the antisense direction. The gene expression analysis revealed that the transcript and protein levels of the constitutive COX-1 were substantially suppressed in the isolated cloned transfectants with antisense COX-1. By contrast, the expression of the inducible COX-2 was not affected in the stable transfectants with antisense COX-1. All of the cloned stable transfectants with antisense COX-1 exhibited a significant reduction in the immediate synthesis of PGE2 serving as an anti-adipogenic factor. The sustained expression of COX-1 in the antisense direction induced the appreciable stimulation of fat storage in adipocytes during the maturation phase, which was associated with the higher expression levels of adipocyte-specific genes, indicating the positive regulation of adipogenesis program. Moreover, the up-regulation of adipogenesis is accompanied by a higher production of J2 series PGs including 15-deoxy-Δ12,14-PGJ2 and Δ12-PGJ2, known as pro-adipogenic factors by the transfectants with antisense COX-1. The results suggest that the inducible COX-2 can contribute to the endogenous synthesis of PGJ2 derivatives acting as autocrine mediators to simulate adipogenesis during the maturation phase by way of compensation for the suppressed expression of the constitutive COX-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

COX:

Cyclooxygenase

PG:

Prostaglandin

15d-PGJ2 :

15-Deoxy-Δ12,14-PGJ2

PPARγ:

Peroxisome proliferator-activated receptor γ

AA:

Arachidonic acid

DME-HEPES:

Dulbecco's modified Eagle's medium with 25 mM HEPES

PMA:

Phorbol 12-myristate 13-acetate

FBS:

Fetal bovine serum

IBMX:

3-Isobutyl-1-methylxanthine

G418:

Geneticin disulfate

RT:

Reverse transcriptase

PCR:

Polymerase chain reaction

ELISA:

Enzyme-linked immunosorbent assay

GM:

Growth medium

DM:

Differentiation medium

MM:

Maturation medium

C/EBPα:

CCAAT/enhancer-binding protein α

GLUT-4:

Glucose transporter-4

LPL:

Lipoprotein lipase

aP2:

Adipocyte protein 2

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

PVDF:

Polyvinylidene difluoride

References

  1. MacDougald, O. A., & Lane, M. D. (1995). Transcriptional regulation of gene expression during adipocyte differentiation. Annual Review of Biochemistry, 64, 535–559.

    Article  Google Scholar 

  2. Gregoire, F. M., Smas, C. M., & Sul, H. S. (1998). Understanding adipocyte differentiation. Physiological Reviews, 78, 783–809.

    CAS  Google Scholar 

  3. Rangwala, S. M., & Lazar, M. A. (2000). Transcriptional control of adipogenesis. Annual Review of Nutrition, 20, 535–559.

    Article  CAS  Google Scholar 

  4. Guilherme, A., Virbasius, J. V., Puri, C., & Czech, M. P. (2008). Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature Reviews Molecular Cell Biology, 9, 367–377.

    Article  CAS  Google Scholar 

  5. Wajchenberg, B. L. (2000). Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocrine Reviews, 21, 697–738.

    Article  CAS  Google Scholar 

  6. Tsuboi, H., Sugimoto, Y., Kainoh, T., & Ichikawa, A. (2004). Prostanoid EP4 receptor is involved in suppression of 3T3-L1 adipocyte differentiation. Biochemical and Biophysical Research Communications, 322, 1066–1072.

    Article  CAS  Google Scholar 

  7. Xu, L., Nishimura, K., Jisaka, M., Nagaya, T., & Yokota, K. (2006). Gene expression of arachidonate cyclooxygenase pathway leading to the delayed synthesis of prostaglandin E2 and F in response to phorbol 12-myristate 13-acetate and action of these prostanoids during life cycle of adipocytes. Biochimica et Biophysica Acta, 1761, 434–444.

    Article  CAS  Google Scholar 

  8. Mazid, M. A., Chowdhury, A. A., Nagaya, K., Nishimura, K., Jisaka, M., Nagaya, T., et al. (2006). Endogenous 15-deoxy-Δ12,14-PGJ2 synthesized by adipocytes during maturation phase contributes to upregulation of fat storage. FEBS Letters, 580, 6885–6890.

    Article  CAS  Google Scholar 

  9. Hossain, M. S., Chowdhury, A. A., Rahman, M. S., Nishimura, K., Jisaka, M., Nagaya, T., et al. (2011). Development of enzyme-linked immunosorbent assay for Δ12-PGJ2 and its application to the measurement of the endogenous product generated by cultured adipocytes during the maturation phase. Prostaglandins & Other Lipid Mediators, 94, 73–80.

    Article  CAS  Google Scholar 

  10. Hyman, B. T., Stoll, L. L., & Spector, A. A. (1995). Prostaglandin production by 3T3-L1 cells in culture. Biochimica et Biophysica Acta, 713(1982), 375–385.

    Google Scholar 

  11. Forman, B. M., Tontonoz, P., Chen, J., Brun, R. P., Spiegelman, B. M., & Evans, R. M. (1995). 15-Deoxy-Δ12,14-PGJ2 is a ligand for the adipocyte determination factor PPARγ. Cell, 83, 803–812.

    Article  CAS  Google Scholar 

  12. Kliewer, S. A., Lenhard, J. M., Wilson, T. M., Patel, I., Morris, D. C., & Lehman, J. M. (1995). A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation. Cell, 83, 813–819.

    Article  CAS  Google Scholar 

  13. Smith, W. L., DeWitt, D. L., & Garavito, R. M. (2000). Cyclooxygenases: structure, cellular, and molecular biology. Annual Review of Biochemistry, 69, 145–182.

    Article  CAS  Google Scholar 

  14. Fain, J. N., Ballou, L. R., & Bahouth, S. W. (2001). Obesity is induced in mice heterozygous for cyclooxygenase-2. Prostaglandins Other Lipids Mediat, 65, 199–209.

    Article  CAS  Google Scholar 

  15. Green, H., & Kehinde, O. (1974). Sublines of mouse 3T3 cells that accumulate lipid. Cell, 1, 113–116.

    Article  CAS  Google Scholar 

  16. Green, H., & Kehinde, O. (1975). An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipocyte conversion. Cell, 5, 19–27.

    Article  CAS  Google Scholar 

  17. Yan, H., Kermouni, A., Abdel-Hafez, M., & Lau, D. C. W. (2003). Role of cyclooxygenases COX-1 and COX-2 in modulating adipogenesis in 3T3-L1 cells. Journal of Lipid Research, 44, 424–429.

    Article  CAS  Google Scholar 

  18. Petersen, R. K., Jørgensen, C., Rustan, A. C., Frøyland, L., Muller-Decker, K., Furstenberger, G., et al. (2003). Arachidonic acid-dependent inhibition of adipocyte differentiation requires PKA activity and is associated with sustained expression of cyclooxygenases. Journal of Lipid Research, 44, 2320–2330.

    Article  CAS  Google Scholar 

  19. Lehmann, J. M., Lenhard, J. M., Oliver, B. B., Ringold, G. M., & Kliewer, S. A. (1997). Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs. Journal of Biological Chemistry, 272, 3406–3410.

    Article  CAS  Google Scholar 

  20. Chu, X., Nishimura, K., Jisaka, M., Nagaya, T., Shono, F., & Yokota, K. (2010). Up-regulation of adipogenesis in adiocytes expressing stably cylooxygenase-2 in the antisense direction. Prostaglandins & Other Lipid Mediators, 91, 1–9.

    Article  CAS  Google Scholar 

  21. Chowdhury, A. A., Hossain, M. S., Rahman, M. S., Nishijima, K., Jisaka, M., Nagaya, T., et al. (2011). Sustained expression of lipocalin-type prostaglandin D synthase in the antisense direction positively regulates adipogenesis in cloned cultured preadipocytes. Biochemical and Biophysical Research Communications, 411, 287–292.

    Article  CAS  Google Scholar 

  22. Yokota, K., Morishima, T., Nagaya, T., Jisaka, M., & Takinami, K. (1996). Modification of cultured Madin-Darby canine kidney cells with dietary unsaturated fatty acids and regulation of arachidonate cascade reaction. Bioscience, Biotechnology, and Biochemistry, 60, 1096–1103.

    Article  CAS  Google Scholar 

  23. Lu, S., Nishimura, K., Hossain, M. A., Jisaka, M., Nagaya, T., & Yokota, K. (2004). Regulation and role of arachidonate cascade during changes in life cycle of adipocytes. Applied Biochemistry and Biotechnology, 118, 133–153.

    Article  CAS  Google Scholar 

  24. Chu, X., Xu, L., Nishimura, K., Jisaka, M., Nagaya, T., Shono, F., et al. (2009). Suppression of adipogenesis program in cultured preadipocytes transfected stably with cyclooxygenase isoforms. Biochimica et Biophysica Acta, 1791, 273–280.

    Article  CAS  Google Scholar 

  25. Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162, 156–159.

    Article  CAS  Google Scholar 

  26. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. L. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  27. Markwell, M. A., Hass, S. M., Toleret, N. E., & Bieber, L. I. (1981). Protein determination in membrane and lipoprotein samples: manual and automated procedures. Methods in Enzymology, 72, 296–303.

    Article  CAS  Google Scholar 

  28. Kuri-Harcuch, W., & Green, H. (1978). Adipose conversion of 3T3 cells depends on a serum factor. Proceedings of the National Academy of Science U S A, 75, 6107–6109.

    Article  CAS  Google Scholar 

  29. Chowdhury, A. A., Rahman, M. S., Nishimura, K., Jisaka, M., Nagaya, T., Ishikawa, T., et al. (2011). 15-Deoxy-Δ12,14-PGJ2 interferes inducible synthesis of prostaglandins E2 and F that suppress subsequent adipogenesis program in cultured preadipocytes. Prostaglandins & Other Lipid Mediators, 95, 53–62.

    Article  CAS  Google Scholar 

  30. Shibata, T., Kondo, M., Osawa, T., Shibata, N., Kobayashi, M., & Uchida, K. (2002). 15-Deoxy-Δ12,14-PGJ2: A prostaglandin D2 metabolite generated during inflammatory processes. Journal of Biological Chemistry, 277, 10459–10466.

    Article  CAS  Google Scholar 

  31. Murakami, M., Kambe, T., Shimbara, S., & Kudo, I. (1999). Functional coupling between various phospholipase A2s and cyclooxygenases in immediate and delayed prostanoid biosynthetic pathways. Journal of Biological Chemistry, 274, 3103–3115.

    Article  CAS  Google Scholar 

  32. Cornelius, P., MacDougald, O. A., & Lane, M. D. (1994). Regulation of adipocyte development. Annual Review of Nutrition, 14, 99–129.

    Article  CAS  Google Scholar 

  33. Mandrup, S., & Lane, M. D. (1997). Regulating adipogenesis. Journal of Biological Chemistry, 272, 5367–5370.

    Article  CAS  Google Scholar 

  34. Fitzpatrick, F. A., & Wynalda, M. A. (1983). Albumin-catalyzed metabolism of prostaglandin D2: identification of products formed in vitro. Journal of Biological Chemistry, 258, 11713–11718.

    CAS  Google Scholar 

  35. Ghoshal, S., Trivedi, D. B., Graf, G. A., & Loftin, C. D. (2011). Cycylooxygenase-2 deficiency attenuates adipose tissue differentiation and inflammation in mice. Journal of Biological Chemistry, 286, 889–898.

    Article  CAS  Google Scholar 

  36. Munroe, D. G., Wang, E. Y., MacIntyre, J. P., Tam, S. S. C., Lee, D. H. S., Taylor, G. R., et al. (1995). Novel intracellular signaling function of prostaglandin H synthase-1 in NF-B activation. Journal of Inflammation, 45, 260–268.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazushige Yokota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, M.S., Syeda, P.K., Khan, F. et al. Cultured Preadipocytes Undergoing Stable Transfection with Cyclooxygenase-1 in the Antisense Direction Accelerate Adipogenesis During the Maturation Phase of Adipocytes. Appl Biochem Biotechnol 171, 128–144 (2013). https://doi.org/10.1007/s12010-013-0347-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0347-3

Keywords

Navigation