Skip to main content
Log in

Carbon Nanotubes-Based Label-Free Affinity Sensors for Environmental Monitoring

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nanostructures, such as nanowires, nanobelts, nanosprings, and nanotubes, are receiving growing interest as transducer elements of bio/chemical sensors as they provide high sensitivity, multiplexing, small size, and portability. Single-walled carbon nanotubes (SWNTs) are one such class of nanostructure materials that exhibit superior sensing behavior due to its large-surface carbon atoms that are highly responsive to surface adsorption events. Further, their compatibility with modern microfabrication technologies and facile functionalization with molecular recognition elements make them promising candidates for bio/chemical sensors applications. Here, we review recent results on nanosensors based on SWNTs modified with biological receptors such as aptamers, antibodies, and binding proteins, to develop highly sensitive, selective, rapid, and cost-effective label-free chemiresistor/field-effect transistor nanobiosensors for applications in environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Penza, M., Rossi, R., Alvisi, M., Signore, M. A., Serra, E., Paolesse, R., D’Amico, A., & Di Natale, C. (2010). Sensors and Actuators B: Chemical, 144, 387–394.

    Article  CAS  Google Scholar 

  2. Shirsat, M. D., Sarkar, T., Kakoullis, J., Myung, N. V., Konnanath, B., Spanias, A., & Mulchandani, A. (2012). Journal of Physical Chemistry C, 116, 3845–3850.

    Article  CAS  Google Scholar 

  3. Albert, K. J., Lewis, N. S., Schauer, C. L., Sotzing, G. A., Stitzel, S. E., Vaid, T. P., & Walt, D. R. (2000). Chemical Reviews, 100, 2595–2626.

    Article  CAS  Google Scholar 

  4. Abdulhalim, I., Zourob, M., & Lakhtakia, A. (2008). Electromagnetics, 28, 214–242.

    Article  Google Scholar 

  5. Luo, Y., Chen, M., Wen, Q., Zhao, M., Zhang, B., Li, X., Wang, F., Huang, Q., Yao, C., Jiang, T., Cai, G., & Fu, W. (2006). Clinical Chemistry, 52, 2273–2280.

    Article  CAS  Google Scholar 

  6. Lee, H. J., Namkoong, K., Cho, E. C., Ko, C., Park, J. C., & Lee, S. S. (2009). Biosensors and Bioelectronics, 24, 3120–3125.

    Article  CAS  Google Scholar 

  7. Backmann, N., Zahnd, C., Huber, F., Bietsch, A., Plückthun, A., Lang, H.-P., Güntherodt, H.-J., Hegner, M., & Gerber, C. (2005). Proceedings of the National Academy of Sciences of the United States of America, 102, 14587–14592.

    Article  CAS  Google Scholar 

  8. Ramanathan, K., & Danielsson, B. (2001). Biosensors and Bioelectronics, 16, 417–423.

    Article  CAS  Google Scholar 

  9. Salman, S., Soundararajan, S., Safina, G., Satoh, I., & Danielsson, B. (2008). Talanta, 77, 490–493.

    Article  CAS  Google Scholar 

  10. Qavi, A., Washburn, A., Byeon, J.-Y., & Bailey, R. (2009). Analytical and Bioanalytical Chemistry, 394, 121–135.

    Article  CAS  Google Scholar 

  11. Mulchandani, A., & Myung, N. V. (2011). Current Opinion in Biotechnology, 22, 502–508.

    Article  CAS  Google Scholar 

  12. Wanekaya, A. K., Chen, W., Myung, N. V., & Mulchandani, A. (2006). Electroanalysis, 18, 533–550.

    Article  CAS  Google Scholar 

  13. Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58.

    Article  CAS  Google Scholar 

  14. Buongiorno Nardelli, M., Fattebert, J. L., Orlikowski, D., Roland, C., Zhao, Q., & Bernholc, J. (2000). Carbon, 38, 1703–1711.

    Article  CAS  Google Scholar 

  15. Rinzler, A. G., Liu, J., Dai, H., Nikolaev, P., Huffman, C. B., Rodríguez-Macías, F. J., Boul, P. J., Lu, A. H., Heymann, D., Colbert, D. T., Lee, R. S., Fischer, J. E., Rao, A. M., Eklund, P. C., & Smalley, R. E. (1998). Applied Physics A: Materials Science and Processing, 67, 29–37.

    Article  CAS  Google Scholar 

  16. Wong, E. W., Sheehan, P. E., & Lieber, C. M. (1997). Science, 277, 1971–1975.

    Article  CAS  Google Scholar 

  17. Yakobson, B. I., & Smalley, R. E. (1997). American Scientist, 85, 324–337.

    Google Scholar 

  18. Green, A. A., & Hersam, M. C. (2009). Nature Nanotechnology, 4, 64–70.

    Article  CAS  Google Scholar 

  19. Wei, G., Zhang, J., Xie, L., & Jandt, K. D. (2011). Carbon, 49, 2216–2226.

    Article  CAS  Google Scholar 

  20. Tlili, C., Cella, L. N., Myung, N. V., Shetty, V., & Mulchandani, A. (2010). Analyst, 135, 2637–2642.

    Article  CAS  Google Scholar 

  21. Wang, C., Zhang, J., Ryu, K., Badmaev, A., De Arco, L. G., & Zhou, C. (2009). Nano Letters, 9, 4285–4291.

    Article  CAS  Google Scholar 

  22. Kim, S. N., Rusling, J. F., & Papadimitrakopoulos, F. (2007). Advanced Materials, 19, 3214–3228.

    Article  CAS  Google Scholar 

  23. Garcia-Aljaro, C., Cella, L. N., Shirale, D. J., Park, M., Javier Munoz, F., Yates, M. V., & Mulchandani, A. (2010). Biosensors and Bioelectronics, 26, 1437–1441.

    Article  CAS  Google Scholar 

  24. So, H.-M., Park, D.-W., Jeon, E.-K., Kim, Y.-H., Kim, B. S., Lee, C.-K., Choi, S. Y., Kim, S. C., Chang, H., & Lee, J.-O. (2008). Small, 4, 197–201.

    Article  CAS  Google Scholar 

  25. Shirale, D. J., Bangar, M. A., Park, M., Yates, M. V., Chen, W., Myung, N. V., & Mulchandani, A. (2010). Environmental Science and Technology, 44, 9030–9035.

    Article  CAS  Google Scholar 

  26. Dastagir, T., Forzani, E. S., Zhang, R., Amlani, I., Nagahara, L. A., Tsui, R., & Tao, N. (2007). Analyst, 132, 738–740.

    Article  CAS  Google Scholar 

  27. Ishikawa, F. N., Stauffer, B., Caron, D. A., & Zhou, C. (2009). Biosensors and Bioelectronics, 24, 2967–2972.

    Article  CAS  Google Scholar 

  28. Dixon, T. C., Meselson, M., Guillemin, J., & Hanna, P. C. N. (1999). The New England Journal of Medicine, 341, 815–826.

    Article  CAS  Google Scholar 

  29. Milne, J. C., Furlong, D., Hanna, P. C., Wall, J. S., & Collier, R. J. J. (1994). Biological Chemistry, 269, 20607–20612.

    CAS  Google Scholar 

  30. Cella, L. N., Sanchez, P., Zhong, W., Myung, N. V., Chen, W., & Mulchandani, A. (2010). Analytical Chemistry, 82, 2042–2047.

    Article  CAS  Google Scholar 

  31. Park, M., Cella, L. N., Chen, W., Myung, N. V., Mulchandani, A. (2010) Biosensors and Bioelectronics 26, 1297–1301.

  32. Mahendra Wijaya, I. P., Nie, T. J., Gandhi, S., Boro, R., Palaniappan, A., Hau, G. W., Rodriguez, I., Suri, C. R., Mhaisalkar, S. G. (2010) Lab on a Chip 10, 634–638.

  33. Liu, N., Cai, X., Lei, Y., Zhang, Q., Chan-Park, M. B., Li, C., Chen, W., & Mulchandani, A. (2007). Electroanalysis, 19, 616–619.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Mulchandani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, T., Gao, Y. & Mulchandani, A. Carbon Nanotubes-Based Label-Free Affinity Sensors for Environmental Monitoring. Appl Biochem Biotechnol 170, 1011–1025 (2013). https://doi.org/10.1007/s12010-013-0233-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0233-z

Keywords

Navigation