Skip to main content
Log in

Purification, Sequencing, and Biochemical Characterization of a Novel Calcium-Independent α-Amylase AmyTVE from Thermoactinomyces vulgaris

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

α-Amylase from Thermoactinomyces vulgaris was highly purified 48.9-fold by ammonium sulfate precipitation, gel filtration on Sephadex G-50 column, and ion exchange chromatography column of DEAE-cellulose. The molecular weight of the enzyme was estimated to be 135 and 145 kDa by SDS–PAGE. Its high molecular weight is due to high glycosylation. The purified amylase exhibited maximal activity at pH 6.0 to 7.0 and was stable in the range of pH 4.0 to 9.0. The optimum temperature for its activity was 50 °C. The enzyme half-life time was 120 min at 50 °C, suggesting intermediate temperature stable α-amylase. The enzyme was sensitive to different metal ions, including NaCl, CoCl2, and CaCl2, and to different concentrations of EDTA. The enzyme activity was inhibited in the presence of 1 mM CaCl2, suggesting that it is a calcium-independent α-amylase. The TLC showed that the amylase hydrolyzed starch to produce large maltooligosaccharides as the main products. A 1.1-kb DNA fragment of the putative α-amylase gene (amy TVE) from T. vulgaris was amplified by using two specific newly designed primers. Sequencing analysis showed 56.2 % similarity to other Thermoactinomyces α-amylases with two conserved active sites confirming its function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pandey, A., Nigam, P., Soccol, C. R., Soccol, V. Y., Singh, D., & Mohan, R. (2000). Biotechnology and Applied Biochemistry, 31, 135–152.

    Article  CAS  Google Scholar 

  2. Tonkova, A. (2006). Microbial starch converting enzymes of the α-amylase family. In R. C. Ray & O. P. Wards (Eds.), Microbial biotechnology in horticulture (pp. 421–472). Enfield: Science Publishers.

    Google Scholar 

  3. Ahuja, A., Gupta, R., Saxena, R. K., & Gigras, P. (1998). An antistaling enzyme from microbes for baked products. In J. S. Crowther & B. Marthi (Eds.), Proceedings of the microbiological safety of processed foods (p. 127). New Delhi: Oxford and IBH.

    Google Scholar 

  4. Gigras, P., Sahai, V., & Gupta, R. (2002). Current Microbiology, 45, 203–208.

    Article  CAS  Google Scholar 

  5. Ito, K., Ito, S., Ishino, K., Shimizu-Ibuka, A., & Sakai, H. (2007). Biochimica et Biophysica Acta, 1774, 443–449.

    Article  CAS  Google Scholar 

  6. Abou Dobara, M. I., El-Sayed, A. K., El-Fallal, A. A., & Omar, N. F. (2011). Polish Journal of Microbiology, 60, 65–71.

    CAS  Google Scholar 

  7. Gupta, R., Paresh, G., Mohapatra, H., Goswami, V. K., & Chauhan, B. (2003). Process Biochemistry, 38, 1599–1616.

    Article  CAS  Google Scholar 

  8. Lacey, J., & Cross, T. (1989). Genus Thermoactinomyces Tsiklinsky 1899, 501AL. In S. T. Williams, M. E. Sharpe, & J. G. Holt (Eds.), Bergey’s manual of systematic bacteriology (Vol. 4, pp. 2574–2585). Baltimore: Williams & Wilkins.

    Google Scholar 

  9. Waksman, S. A. (1959). Group Proceedings of the National Academy of Science, 45, 1043–1047.

    Article  CAS  Google Scholar 

  10. Palanivelu, P. (2001). Analytical biochemistry and separation techniques. Madurai: Kalamani.

    Google Scholar 

  11. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  12. Dubios, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.

    Article  Google Scholar 

  13. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  14. Heukeshoven, J., & Dernick, R. (1985). Electrophoresis, 6, 103–112.

    Article  CAS  Google Scholar 

  15. Moller, H. J., & Poulsen, J. H. (1995). Analytical Biochemistry, 226, 371–374.

    Article  CAS  Google Scholar 

  16. Garcia-Gonzalez, M. D., Martin, J. F., Vigal, T., & Liras, P. (1991). Journal of Bacteriology, 173, 2451–2458.

    CAS  Google Scholar 

  17. Salgado, A., Ramírez, N., Sandoval, E., & Sandoval, H. (2008). Journal de Mycologie Médicale, 18, 100–102.

    Article  Google Scholar 

  18. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  Google Scholar 

  19. Brena, B. M., Pazos, C., Franco-Fraguas, L., & Batista-Viera, F. (1996). Journal of Chromatography B: Biomedical Sciences and Applications, 684, 217–237.

    Article  CAS  Google Scholar 

  20. Mahler, H., Friess, W., Grauschopf, U., & Kiese, S. (2009). Journal of Pharmaceutical Sciences, 98, 2909–2934.

    Article  CAS  Google Scholar 

  21. Wang, Y. W., Nema, S., & Teagarden, D. (2010). International Journal of Pharmaceutics, 390, 89–99.

    Article  CAS  Google Scholar 

  22. Saluja, A., & Kalonia, D. S. (2008). International Journal of Pharmaceutics, 358, 1–15.

    Article  CAS  Google Scholar 

  23. Saluja, A., Badkar, A. V., Zeng, D. L., & Kalonia, D. S. (2007). Journal of Pharmaceutical Sciences, 96, 3181–3195.

    Article  CAS  Google Scholar 

  24. Nakamura, A., Haga, K., & Yamane, K. (1993). Biochemistry, 32, 6624–6631.

    Article  CAS  Google Scholar 

  25. Lawson, C. L., van Montfort, R., Strokopytov, B., Rozeboom, H. J., Kalk, K. H., de Vries, G. E., et al. (1994). Journal of Molecular Biology, 236, 590–600.

    Article  CAS  Google Scholar 

  26. Strokopytov, B., Knegtel, R. M. A., Penninga, D., Roozeboom, H. J., Kalk, K. H., Dijkhuizen, L., et al. (1996). Biochemistry, 35, 4241–4249.

    Article  CAS  Google Scholar 

  27. Uitdehaag, J., Mosi, R., Kalk, H., van der Veen, B., Dijkhuizen, L., Withers, S., et al. (1999). Nature Structural Biology, 6, 432–436.

    Article  CAS  Google Scholar 

  28. Nielsen, J., Borchert, T., & Vriend, G. (2001). Protein Engineering, 14, 505–512.

    Article  CAS  Google Scholar 

  29. Shimizu, M., Kanno, M., Tamura, M., & Suckane, M. (1978). Agricultural and Biological Chemistry, 42, 1681–1688.

    Article  CAS  Google Scholar 

  30. Hofemeister, B., Konig, S., Hoang, V., Engel, J., Mayer, G., Hansen, G., et al. (1994). Applied and Environmental Microbiology, 60, 3381–3389.

    CAS  Google Scholar 

  31. Uguru, G. C., Akinyanju, J. A., & Sani, A. (1997). Letters in Applied Microbiology, 25, 13–16.

    Article  CAS  Google Scholar 

  32. Olesen, T. (1991). Antistaling process and agent. Patent application. WO9104669.

  33. Li, S., Patapof, F., Overcashier, T. W., Hsu, D., Ngugen, T. C., & Borchardt, R. T. (2000). Journal of Pharmaceutical Sciences, 85, 873–877.

    Article  Google Scholar 

  34. Saunders, A. J., Davis-Searles, P. R., Allen, D. L., Pielak, G. J., & Erie, D. A. (2000). Biopolymers, 53, 293–307.

    Article  CAS  Google Scholar 

  35. Wendorf, J. R., Radke, C. J., & Blanch, H. W. (2004). Biotechnology and Bioengineering, 87, 565–573.

    Article  CAS  Google Scholar 

  36. Domenico, R. D., Lavecchia, R., & Ottavi, A. (2004). AICHE Journal, 46, 1478–1489.

    Article  Google Scholar 

  37. Ashie, I. N. A., Lanier, T. C., & MacDonald, G. A. (2008). Journal of Food Science, 64, 818–822.

    Article  Google Scholar 

  38. Gangadhara, P., Kumar, R., & Prakash, V. (2008). The Protein Journal, 27, 440–449.

    Article  CAS  Google Scholar 

  39. Sukenik, S., & Harries, D. (2009). Biophysical Journal, 96, 82a–83a.

    Google Scholar 

  40. Yadav, J. K., & Prakash, V. (2009). Journal of Biosciences, 34, 377–387.

    Article  CAS  Google Scholar 

  41. Sanchez-Ruiz, J. M. (2010). Biophysical Chemistry, 148, 1–15.

    Article  CAS  Google Scholar 

  42. Linden, A., Mayans, O., Meyer-Claucke, W., Antranikian, G., & Wilmanns, M. (2003). Journal of Biological Chemistry, 278, 9875–9884.

    Article  CAS  Google Scholar 

  43. Prakash, O., & Jaiswal, N. (2010). Applied Biochemistry and Biotechnology, 160, 2401–2414.

    Article  Google Scholar 

  44. Kelly, R. M., Dijkhuizen, L., & Leemhuis, H. (2009). Journal of Biotechnology, 140, 184–193.

    Article  CAS  Google Scholar 

  45. Malhotra, R., Noorvez, S. M., & Satyanarayana, T. (2000). Letters in Applied Microbiology, 31, 378–384.

    Article  CAS  Google Scholar 

  46. Azhari, R., & Lotan, N. (1991). Journal of Materials Science. Materials in Medicine, 2, 9–18.

    Article  CAS  Google Scholar 

  47. Barros, M. C., Silva, R. N., Ramada, M. H. S., Galdino, A. S., Moraes, L. M. P., Torres, F. A. G., et al. (2009). Carbohydrate Research, 344, 1682–1686.

    Article  Google Scholar 

  48. Shental-Bechor, D., & Levy, Y. (2009). Current Opinion in Structural Biology, 19, 524–533.

    Article  CAS  Google Scholar 

  49. Sills, A. M., Sauder, M. E., & Stewart, G. G. (1984). Journal of the Institute of Brewing, 90, 311–320.

    Article  CAS  Google Scholar 

  50. Yamane, K., Yamaguchi, K., & Maruo, B. (1973). Biochimica et Biophysica Acta, 295, 323–340.

    Article  CAS  Google Scholar 

  51. Matsuzaki, H., Yamane, K., Yamaguchi, K., Nagata, Y., & Maruo, B. (1974). Biochimica et Biophysica Acta, 365, 235–247.

    Article  CAS  Google Scholar 

  52. Srivastava, R. A. (1984). Enzyme and Microbial Technology, 6, 426–422.

    Google Scholar 

  53. Vihinen, M., & Mantsala, P. (1989). Critical Reviews in Biochemistry and Molecular Biology, 24, 329–418.

    Article  CAS  Google Scholar 

  54. Eriksen, S. H., Jensen, B., & Olsen, J. (1998). Current Microbiology, 37, 117–122.

    Article  CAS  Google Scholar 

  55. Wardi, A. H., & Michos, G. A. (1972). Analytical Biochemistry, 49, 607–609.

    Article  CAS  Google Scholar 

  56. Buxbaum, E. (2003). Analytical Biochemistry, 314, 70–76.

    Article  CAS  Google Scholar 

  57. Grootegoed, J. A., Lauwers, A. M., & Heinen, W. (1973). Archives of Microbiology, 90, 223–232.

    CAS  Google Scholar 

  58. Ratanakhanokchai, K., Kaneko, J., Kamio, Y., & Izaki, K. (1992). Applied and Environmental Microbiology, 58, 2490–2494.

    CAS  Google Scholar 

  59. Tonozuka, T., Mogi, S., Shimura, Y., Ibuka, A., Sakai, H., Matsuzawa, H., et al. (1995). Biochimica et Biophysica Acta (BBA), 1252, 35–42.

    Article  Google Scholar 

  60. MacGregor, E., Janecek, S., & Svensson, B. (2001). Biochimica et Biophysica Acta, 1546, 1–20.

    Article  CAS  Google Scholar 

  61. Cross, T., & Unsworth, B. A. (1981). The taxonomy of the endospore-forming actinomycetes. In R. C. W. Berkeley & M. Goodfellow (Eds.), The aerobic, endospore-forming bacteria: classification and identification. London: Academic.

    Google Scholar 

  62. Priest, F. G. (1991). Isolation and identification of aerobic endospore-forming bacteria. In C. R. Harwood & S. M. Cutting (Eds.), Biotechnology handbooks 2. Bacillus (pp. 27–56). New York: Plenum.

    Google Scholar 

  63. Park, Y.-H., Kim, E., Yim, D., Kho, Y., Mheen, T., & Goodfellow, M. (1993). Zentralbl Bakteriol, 278, 469–478.

    Article  CAS  Google Scholar 

  64. Yoon, J. H., Shin, Y. K., Kim, I. G., & Park, Y. H. (2005). International Journal of Systematic and Evolutionary Microbiology, 55, 395–400.

    Article  CAS  Google Scholar 

  65. Andre, G., Buleon, A., Haser, R., & Tran, V. (1999). Biopolymers, 50, 751–762.

    Article  CAS  Google Scholar 

  66. Dauter, Z., Dauter, M., Brzozowski, A. M., Christensen, S., Borchert, T., Beier, L., et al. (1999). Biochemistry, 38, 8385–8392.

    Article  CAS  Google Scholar 

  67. Nahoum, V., Roux, G., Anton, V., Rouge, P., Puigserver, A., Bischo, H., et al. (2000). The Biochemical Journal, 346, 201–208.

    Article  CAS  Google Scholar 

  68. Svensson, B. (1994). Plant Molecular Biology, 25, 141–157.

    Article  CAS  Google Scholar 

  69. Janecek, S. (1997). Progress in Biophysics and Molecular Biology, 67, 67–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noha F. Omar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Sayed, A.K.A., Abou Dobara, M.I., El-Fallal, A.A. et al. Purification, Sequencing, and Biochemical Characterization of a Novel Calcium-Independent α-Amylase AmyTVE from Thermoactinomyces vulgaris . Appl Biochem Biotechnol 170, 483–497 (2013). https://doi.org/10.1007/s12010-013-0201-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0201-7

Keywords

Navigation