Skip to main content
Log in

Kinetic and Thermodynamic Characterization of Lysine Production Process in Brevibacterium lactofermentum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Detailed kinetic and thermodynamic parameters for lysine production from Brevibacterium lactofermentum are investigated for the first time in this study. Production of the essential amino acid, l-lysine, by B. lactofermentum was assessed in a flask and a continuously stirred tank fermentor (22 L). Maximum lysine production was achieved after 40 h of growth and at 35 °C. The effect of different nitrogen sources such as NH4NO3, (NH4)2SO4, (NH4)2HPO4, corn steep liquor, NaNO3, and urea showed that corn steep liquor gave a better lysine yield. Lysine production was increased when dissolved oxygen was maintained at 50 % saturation. The use of dissolved oxygen was critical for high productivity. This indicates that dissolved oxygen greatly affects l-lysine productivity. Kinetic and thermodynamic parameters during lysine production from molasses and glucose mixture showed that B. lactofermentum efficiently converted the substrate mixture into cell mass and lysine. Kinetic and thermodynamic parameters were significantly higher compared with other microorganisms which may be due to the high metabolic activity of B. lactofermentum. This study will have a significant impact on future strategies for lysine production at industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2

Similar content being viewed by others

References

  1. Wendisch, V. F., Bott, M., Kalinowski, J., Oldiges, M., & Wiechert, W. (2006). Journal of Biotechnology, 124, 74–92.

    Article  CAS  Google Scholar 

  2. Leuchtenberger, W., Huthmacher, K., & Drauz, K. (2005). Applied Microbiology and Biotechnology, 69, 1–8.

    Article  CAS  Google Scholar 

  3. Sattar, M., Ahmed, S., Sheikh, M. A., & Hashmi, A. S. (2008). Journal of the Chemical Society of Pakistan, 30, 642–648.

    CAS  Google Scholar 

  4. Sallam, A., & Steinbüchel, A. (2010). Applied Microbiology and Biotechnology, 87, 815–828.

    Article  CAS  Google Scholar 

  5. Ali, S., Ahmed, S., Sheikh, M. A., Hashmi, A. S., Rajoka, M. I., & Jamil, A. (2009). Journal of the Chemical Society of Pakistan, 31, 97–102.

    CAS  Google Scholar 

  6. Koffas, M., & Stephanopoulos, G. (2005). Current Opinion in Biotechnology, 16, 361–366.

    Article  CAS  Google Scholar 

  7. Wittmann, C., & Becker, J. (2007). In V. F. Wendisch (Ed.), Amino acid biosynthesis: pathways, regulation and metabolic engineering (pp. 39–70). Heidelberg: Springer.

    Chapter  Google Scholar 

  8. Ekwealor, I. A., & Obeta, J. A. N. (2005). African Journal of Biotechnology, 4, 633–638.

    CAS  Google Scholar 

  9. Athar, M., Ahmed, S., & Hashmi, A. S. (2009). Journal of the Chemical Society of Pakistan, 31, 115–121.

    CAS  Google Scholar 

  10. Rajoka, M. I., Ahmed, S., Athar, M., & Hashmi, A. S. (2012). Annals of Microbiology, 62, 1173–1179.

    Article  CAS  Google Scholar 

  11. Aiba, S., Humphrey, A. E., & Millis, N. F. (1973). In: Biochemical engineering (2nd ed., pp. 92–127). New York: Academic Press.

    Google Scholar 

  12. Association of Official Analytical Chemists (1984) Official methods of analysis, 14th edn. Washington, DC: AOAC International. ISBN 0-93558424-2.

  13. Rajoka, M. I., Khan, S. H., Jabbar, M. A., Awan, M. S., & Hashmi, A. S. (2006). Bioresource Technology, 97, 1934–1941.

    Article  CAS  Google Scholar 

  14. Rajoka, M. I., Khan, S., & Shahid, R. (2003). Food Technology and Biotechnology, 41, 315–320.

    CAS  Google Scholar 

  15. Rajoka, M. I., Latif, F., Khan, S., & Shahid, R. (2004). Biotechnology Letters, 26, 741–746.

    Article  CAS  Google Scholar 

  16. Chen, J., Lu, Z., Sakon, J., & Stites, W. E. (2000). Journal of Molecular Biology, 303, 125–130.

    Article  CAS  Google Scholar 

  17. Converti, A., & Dominguez, J. M. (2001). Biotechnology and Bioengineering, 75, 39–45.

    Article  CAS  Google Scholar 

  18. Converti, A., & Del Borghi, M. (1998). Bioprocess Engineering, 18, 27–33.

    Article  CAS  Google Scholar 

  19. Leuchtenberger, W. (1996). Applied Microbiology and Biotechnology, 6, 455–502.

    Google Scholar 

  20. Kiefer, P., Hienzle, E., & Wittman, C. (2002). Journal of Industrial Microbiology and Biotechnology, 28, 338–343.

    Article  CAS  Google Scholar 

  21. Gayen, K., & Venkatesh, K. V. (2007). Journal of Industrial Microbiology and Biotechnology, 34, 363–372.

    Article  CAS  Google Scholar 

  22. Demain, A. L., Phaff, H. J., & Kurtzman, C. P. (1998). In C. Kurtzmann & J. Fell (Eds.), The yeasts - a taxonomic study (4th ed., pp. 13–19). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  23. Nigam, J. N. (2000). Journal of Biotechnology, 80, 189–193.

    Article  CAS  Google Scholar 

  24. Ahmed, S., Ahmad, F., & Hashmi, A. S. (2010). Pakistan Journal of Botany, 42, 1225–1234.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank University of Agriculture, Faisalabad, 38040, Pakistan and National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan for providing financial support to carry out this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sibtain Ahmed or Muhammad Ibrahim Rajoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, S., Afzal, M. & Rajoka, M.I. Kinetic and Thermodynamic Characterization of Lysine Production Process in Brevibacterium lactofermentum . Appl Biochem Biotechnol 170, 81–90 (2013). https://doi.org/10.1007/s12010-013-0169-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0169-3

Keywords

Navigation