Skip to main content
Log in

Ionic Liquid-Induced Structural and Activity Changes in Hen Egg White Lysozyme

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lysozyme crystals in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim]BF4), 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), 1-butyl-3-methylimidazolium bromide([C4mim]Br), and 1,3-dimethylimidazolium iodine([dmim]I) were prepared, and the influence of ionic liquids (ILs) on the structure and activity change of lysozyme was investigated. Fourier transform infrared spectroscopy revealed the major secondary structures of α-helix and β-sheet for lysozyme. It was interesting to note that increases of the band near 2,935 and 1,656 cm−1 from Raman spectroscopy are attributed to the unfolding of lysozyme molecules. A shift in amide III from 1,230 to 1,270 cm−1 in adding [dmim]I occurs, indicating a transformation from β-sheet to random coil. With regard to adding [C4mim]BF4, [C4mim]Cl, and [C4mim]Br, α-helix and β-sheet are the predominant structures for lysozyme. The activity study showed that the ILs used brought a positive effect. Especially, [dmim]I leads to a drastic increase in relative activity, and its value reaches 50 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu, Y. D., Wu, G. Z., & Qi, M. Y. (2005). Polymorphous crystals from chlorozincate-choline chloride ionic liquids in different molar ratios. Journal in Crystal Growth, 281, 616–622.

    Article  CAS  Google Scholar 

  2. Zhao, Y., Ma, C. Y., Yuan, S., & Philips, D. L. (2004). Study of succinylated food proteins by Raman spectroscopy. Journal of Agricultural and Food Chemistry, 52, 1815–1823.

    Article  CAS  Google Scholar 

  3. Liu, W. N., Hou, Y. C., Wu, W. Z., Ren, S. H., Jing, Y., & Zhang, B. G. (2011). Solubility of glucose in ionic liquid t antisolvent mixtures. Industrial and Engineering Chemistry Research, 50, 6952–6956.

    Article  CAS  Google Scholar 

  4. Pusey, M. L., Paley, M. S., Turner, M. B., & Rogers, R. D. (2007). Protein crystallization using room temperature ionic liquids. Crystal Growth and Design, 7, 787–793.

    Article  CAS  Google Scholar 

  5. Judge, R. A., Takahashi, S., Longenecker, K. L., Fry, E. H., Abad-Zapatero, C., & Chiu, M. L. (2009). The effect of ionic liquids on protein crystallization and X-ray diffraction resolution. Crystal Growth and Design, 9, 3463–3469.

    Article  CAS  Google Scholar 

  6. Lange, C., Patil, G., & Rudolph, R. (2005). Ionic liquids as refolding additives: N′-alkyl and N′-(omega-hydroxyalkyl) N-methylimidazolium chlorides. Protein Science, 14, 2693–2701.

    Article  CAS  Google Scholar 

  7. Lu, J., Wang, X. J., & Ching, C. B. (2003). Effect of additives on the crystallization of lysozyme and chymotrypsinogen A. Crystal Growth and Design, 3, 83–87.

    Article  CAS  Google Scholar 

  8. Kizel, R., Irudayaraj, J., & Seetharaman, K. (2002). Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. Journal of Agricultural and Food Chemistry, 50, 3912–3918.

    Article  Google Scholar 

  9. Ma, C. Y., Rout, M. K., & Mock, W. Y. (2001). Study of oat globulin conformation by Fourier transform infrared spectroscopy. Journal of Agricultural and Food Chemistry, 49, 3328–3334.

    Article  CAS  Google Scholar 

  10. Howell, N. K., Arteaga, G., & Nakai, S. (1999). Raman spectral analysis in the C–H stretching region of proteins and amino acids for investigation of hydrophobic interactions. Journal of Agricultural and Food Chemistry, 47, 924–933.

    Article  CAS  Google Scholar 

  11. Herrero, A. M., Carmona, P., & Careche, M. (2004). Raman spectroscopic study of structural changes in hake (Merluccius merluccius L.) muscle proteins during frozen storage. Journal of Agricultural and Food Chemistry, 52, 2147–2153.

    Article  CAS  Google Scholar 

  12. Alizadeh-pasdar, N., & Nakai, S. (2004). FT-Raman spectroscopy, fluorescent probe, and solvent accessibility study of egg and milk proteins. Journal of Agricultural and Food Chemistry, 52, 5277–5283.

    Article  CAS  Google Scholar 

  13. Chakraborti, S., Chatterjee, T., Joshi, P., Poddar, A., Bhattacharyya, B., Singh, S. P., Gupta, V., & Chakrabarti, P. (2010). Structure and activity of lysozyme on binding to ZnO nanoparticles. Langmuir, 5, 3506–3513.

    Article  Google Scholar 

  14. Nahar, S., & Tajmir-Riahi, H. A. (1996). Hg, Cd, and Pb with proteins of PSII: evidence for metal-sulfur binding and protein conformational transition by FTIR spectroscopy. Journal Colloid and Interface Science, 178, 648–656.

    Article  CAS  Google Scholar 

  15. Macdonald, G. M., & Barry, B. A. (1992). Difference FT-IR study of a novel biochemical preparation of photosystem II. Biochemestry, 31, 9848–9856.

    Article  CAS  Google Scholar 

  16. Chen, P., Tian, H. F., Zhang, L. N., & Chang, P. R. (2008). Structure and properties of soy protein plastics with ε-caprolactone/glycerol as binary plasticizers. Industrial Engineering Research, 47, 9389–9395.

    Article  CAS  Google Scholar 

  17. Secundo, F., & Guerrieri, N. (2005). ATR-FT/IR study on the interactions between gliadins and dextrin and their effects on protein secondary structure. Journal of Agricultural and Food Chemistry, 53, 1757–1764.

    Article  CAS  Google Scholar 

  18. Yang, X. Z., Wu, D. C., Du, Z. L., Li, R. X., Chen, X. L., & Li, X. H. (2009). Spectroscopy study on the interaction of quercetin with collagen. Journal of Agricultural and Food Chemistry, 57, 3431–3435.

    Article  CAS  Google Scholar 

  19. Wang, Z. Z., Dang, L. P., & Jiang, P. P. (2010). Crystallization control of thermal stability and morphology of hen egg white lysozyme crystals by ionic liquids. Journal of Agricultural and Food Chemistry, 58, 5444–5448.

    Article  CAS  Google Scholar 

  20. Byler, D. M., Farrell, H. M., & Susi, H. (1988). Raman spectroscopic study of casein structure. Journal of Dairy Science, 71, 2622–2629.

    Article  CAS  Google Scholar 

  21. Lichan, E. C. Y. (1996). The application of Raman spectroscopy in food science. Trends in Food Science & Technology, 7, 361–370.

    Article  CAS  Google Scholar 

  22. Ma, C. Y., Rout, M. K., Chan, W. M., & Phillips, D. L. (2000). Raman spectroscopic study of oat globulin conformation. Journal of Agricultural and Food Chemistry, 48, 1542–1547.

    Article  CAS  Google Scholar 

  23. Meng, G., Ma, C. Y., & Phillips, D. L. (2003). Raman spectroscopic study of globulin from Phaseolus angularis (red bean). Food Chemistry, 81, 411–420.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (no. 20806053) and China Postdoctoral Science Foundation (no. 200902274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan-Zhong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dang, LP., Fang, WZ., Li, Y. et al. Ionic Liquid-Induced Structural and Activity Changes in Hen Egg White Lysozyme. Appl Biochem Biotechnol 169, 290–300 (2013). https://doi.org/10.1007/s12010-012-9986-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9986-z

Keywords

Navigation