Skip to main content
Log in

Influence of Biofilm Density on Anaerobic Sequencing Batch Biofilm Reactor Treating Mustard Tuber Wastewater

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Considering the characteristics of high salinity, high concentration of organic matter, and high biodegradability, a new and efficient anaerobic sequencing batch biofilm reactor (ASBBR) was chosen as an anaerobic pretreatment unit to treat most organic compounds in mustard tuber wastewater. By changing the biofilm density of the reactor, the test was carried out to find out the influence of biofilm density on effluent COD, the content of the sludge dehydrogenase, and gas production rate. Results showed that under the condition of 30 °C, draining ratio of 1/3, and 2 days of hydraulic retention time, COD removal rate increased from 71.5 to 90.5 % when the biofilm density increased from 15 to 50 %; however, COD removal rate increased from 90.5 to 91.3 % when the biofilm density increased from 50 to 70 %. According to the influence of biofilm density on effluent COD, the content of the sludge dehydrogenase, and gas production rate, ASBBR should take 50 % biofilm density in mustard wastewater treatment. At the same time, these design parameters can be used to guide practical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pendashteh, A. R., Fakhru’l-Razi, A., Madaeni, S. S., Abdullah, L. C., Abidin, Z. Z., & Biak, D. R. A. (2011). Membrane foulants characterization in a membrane bioreactor (MBR) treating hypersaline oily wastewater. Chemical Engineering Journal, 168, 140–150.

    Article  CAS  Google Scholar 

  2. Aminzadeh, B., Torabian, A., Azimi, A. A., Nabi Bidhendi, G. R., & Mehrdadi, N. (2010). Salt inhibition effects on simultaneous heterotrophic/autotrophic denitrification of high nitrate wastewater. International Journal of Environmental Research, 4, 255–262.

    CAS  Google Scholar 

  3. Rene, E. R., Kim, S. J., & Park, H. S. (2008). Effect of COD/N ratio and salinity on the performance of sequencing batch reactors. Bioresource Technology, 99, 839–846.

    Article  CAS  Google Scholar 

  4. Zhao, X., Wang, Y., Ye, Z., Borthwick, A. G. L., & Ni, J. (2006). Oil field wastewater treatment in biological aerated filter by immobilized microorganisms. Process Biochemistry, 41, 1475–1483.

    Article  CAS  Google Scholar 

  5. Peyton, B. M., Wilson, T., & Yonge, D. R. (2002). Kinetics of phenol biodegradation in high salt solutions. Water Research, 36, 4811–4820.

    Article  CAS  Google Scholar 

  6. Pendashteh, A. R., Abdullah, L. C., Fakhru’l-Razi, A., Madaeni, S. S., Abidin, Z. Z., & Biak, D. R. A. (2012). Evaluation of membrane bioreactor for hypersaline oily wastewater treatment. Process Safety and Environmental Protection, 90, 45–55.

    Article  CAS  Google Scholar 

  7. Yang, J. C., Zhang, L., Hira, D., Fukuzaki, Y., & Furukawa, K. (2011). Anammox treatment of high-salinity wastewater at ambient temperature. Bioresource Technology, 102, 2367–2372.

    Article  CAS  Google Scholar 

  8. Liu, C., Yamamoto, T., Nishiyama, T., Fujii, T., & Furukawa, K. (2009). Effect of salt concentration in anammox treatment using non woven biomass carrier. Journal of Bioscience and Bioengineering, 107, 519–523.

    Article  CAS  Google Scholar 

  9. Osaka, T., Shirotani, K., Yoshie, S., & Tsuneda, S. (2008). Effects of carbon source on denitrification efficiency and microbial community structure in a saline wastewater treatment process. Water Research, 42, 3709–3718.

    Article  CAS  Google Scholar 

  10. Lefebvre, O., & Moletta, R. (2006). Treatment of organic pollution in industrial saline wastewater: a literature review. Water Research, 40, 3671–3682.

    Article  CAS  Google Scholar 

  11. Aloui, F., Khoufi, S., Loukil, S., & Sayadi, S. (2009). Performances of an activated sludge process for the treatment of fish processing saline wastewater. Desalination, 246, 389–396.

    Article  CAS  Google Scholar 

  12. Ozalp, G., Gomec, C. Y., Ozturk, I., Gonuldinc, S., & Altinbas, M. (2003). Effect of high salinity on anaerobic treatment of low strength effluents. Water Science and Technology, 48, 207–212.

    CAS  Google Scholar 

  13. Kubo, M., Hiroe, J., Murakami, M., Fukami, H., & Tachiki, T. (2001). Treatment of hypersaline-containing wastewater with salt-tolerant microorganisms. Journal of Bioscience and Bioengineering, 91, 222–224.

    CAS  Google Scholar 

  14. Lu, M., Zhang, Z., Yu, W., & Zhu, W. (2009). Biological treatment of oilfield-produced water: a field pilot study. International Biodeterioration & Biodegradation, 63, 316–321.

    Article  CAS  Google Scholar 

  15. Rovirosa, N., Sanchez, E., Cruz, M., Veiga, M. C., & Borja, R. (2004). Coliform concentration reduction and related performance evaluation of a down-flow anaerobic fixed bed reactor treating low-strength saline wastewater. Bioresource Technology, 94, 119–127.

    Article  CAS  Google Scholar 

  16. Tong, Y. (2010). Study on the photosynthetic bacteria with UASB process treatment of high salinity organic wastewater. Journal of Qingdao Technological University, 31, 69–73 (in Chinese).

    CAS  Google Scholar 

  17. Gomec, C. Y., Gonuldinc, S., Eldem, N., & Ozturk, I. (2005). Behavior of an up-flow anaerobic sludge bed (UASB) reactor at extreme salinity. Water Science and Technology, 51, 115–120.

    CAS  Google Scholar 

  18. Li, J., Yu, D. S., Wang, Q., Li, Y., & Ren, X. J. (2009). Experimental study on treatment of wastewater containing 50 % seawater by MBR process. Chinese Journal of Environment Engineering, 3, 1947–1950 (in Chinese).

    CAS  Google Scholar 

  19. Pendashteh, A. R., Fakhru’l-Razi, A., Chaibakhsh, N., Abdullah, L. C., Madaeni, S. S., & Abidin, Z. Z. (2011). Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network. Journal of Hazardous Materials, 192, 568–575.

    Article  CAS  Google Scholar 

  20. Vyrides, I., & Stuckey, D. C. (2009). Saline sewage treatment using a submerged anaerobic membrane reactor (SAMBR): effects of activated carbon addition and biogas-sparging time. Water Research, 43, 933–942.

    Article  CAS  Google Scholar 

  21. Chai, H. X., Li, X. P., Zhou, J., Chen, Y., & Long, T. R. (2010). Treatment of mustard tuber wastewater by anaerobic sequencing batch biofilm reactor-two-stage sequencing batch biofilm reactor-chemical-dephosphorization process. Chinese Journal of Environmental Engineering, 4, 785–788 (in Chinese).

    CAS  Google Scholar 

  22. Wang, X. M., Zhou, J., Long, T. R., & Liu, J. (2008). Efficiency of phosphorus removal from high-salinity mustard tuber wastewater by combined biological/chemical process. China Water and Wastewater, 24, 29–33 (in Chinese).

    Google Scholar 

  23. Yang, H. W., Jiang, Z. P., Shi, S. Q., & Tang, W. Z. (2002). INT–dehydrogenase activity test for assessing anaerobic biodegradability of organic compounds. Ecotoxicology and Environmental Safety, 53, 416–421.

    Article  CAS  Google Scholar 

  24. APHA. (2005). Standard methods for water and wastewater examination (21st ed.). Washington: American Public Health Association.

    Google Scholar 

  25. Dun, M. N., Hu, W. R., Pei, H. Y., & Xie, J. (2008). Determination of dehydrogenase activity and its application. Industrial Water Treatment, 28, 1–4 (in Chinese).

    CAS  Google Scholar 

  26. Ghaly, A. E., & Mahmoud, N. S. (2007). Effects of tetrazolium chloride concentration, O2, and cell age on dehydrogenase activity of Aspergillus niger. Applied Biochemistry and Biotechnology, 136, 207–222.

    Article  CAS  Google Scholar 

  27. Zhou, P., He, J. H., & Qian, Y. (2003). Biofilm airlift suspension reactor treatment of domestic wastewater. Water, Air, and Soil Pollution, 144, 81–100.

    Article  CAS  Google Scholar 

  28. Park, J. J., Byun, I. G., Park, S. R., & Park, T. J. (2008). Nitrifying bacterial communities and its activities in aerobic biofilm reactors under different temperature conditions. Korean Journal of Chemical Engineering, 25, 1448–1455.

    Article  CAS  Google Scholar 

  29. Li, R. P., Chen, S. L., & Li, X. J. (2010). Biogas production from anaerobic co-digestion of food waste with dairy manure in a two-phase digestion system. Applied Biochemistry and Biotechnology, 160, 643–654.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (grant no. 51008318).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxiang Chai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chai, H., Kang, W. Influence of Biofilm Density on Anaerobic Sequencing Batch Biofilm Reactor Treating Mustard Tuber Wastewater. Appl Biochem Biotechnol 168, 1664–1671 (2012). https://doi.org/10.1007/s12010-012-9887-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9887-1

Keywords

Navigation