Skip to main content
Log in

Stabilization of the Cellulase Enzyme Complex as Enzyme Nanoparticle

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The native Celluclast BG cellulase enzyme complex consists of different enzymes which can also degrade great substrate molecules as native celluloses. This enzyme complex has been covered by a very thin, a few nanometers thick, polymer layer, in order to improve its stability. It has been proved that the polymer layer around the enzyme molecules does not hinder the digestion as great substrates as crystalline cellulose polymer. The stability of the prepared enzyme nanoparticles (PE) could significantly be increased comparing to that of the native one what was proved by results of the total cellulose activity measured. The pretreated enzyme complex holds its activity often a few magnitudes of orders longer in time than that of the native enzyme complex (enzyme without pretreatment). It retains its activity at least ten times longer than that of the native one, at a temperature range between 20 and 37 °C. The pretreated enzyme complex can have about 50 % of its original activity during 12 h of incubation at even 80 °C, while the native cellulase one totally lost it during 6 h incubation time. The activity of PE has not been significantly reduced even at extreme pH values, namely in the pH range of 1.5 to 12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AOT:

Sodium bis(2-ethylhexyl) sulfosuccinate or aerosol OT

MAPS:

3-(trimethoxysilyl)propyl methacrylate

NE:

Natural Celluclast BG enzyme complex (Novozymes)

PE:

Pretreated Celluclast BG enzyme complex

SEN:

Single enzyme nanoparticle

TEM:

Transmission electron microscope

References

  1. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66(3), 506–577.

    Article  CAS  Google Scholar 

  2. Sánchez, J. Ó., & Cardona, C. A. (2008). Bioresource Technology, 99, 5270–5295.

    Article  Google Scholar 

  3. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Industrial and Engineering Chemistry Research, 48, 3713–3729.

    Article  CAS  Google Scholar 

  4. Klemm, D., Heublein, B., Fink, H.-P., & Bohn, A. (2005). ChemInform, 36(36), 3358.

    Article  Google Scholar 

  5. Schwarz, W. H. (2001). Applied Microbiology and Biotechnology, 56(5–6), 634–649.

    Article  CAS  Google Scholar 

  6. Shoham, Y., Lamed, R., & Bayer, E. A. (1999). Trends in Microbiology, 7(7), 275–281.

    Article  CAS  Google Scholar 

  7. Mattinen, M.-L., Linder, M., Drakenberg, T., & Annila, A. (1998). European Journal of Biochemistry, 256(2), 279–286.

    Article  CAS  Google Scholar 

  8. Norris, V., den Blaauwen, T., Doi, R. H., Harshey, R. M., Janniere, L., Jiménez-Sánchez, A., et al. (2007). Annual Review of Microbiology, 61, 309–329.

    Article  CAS  Google Scholar 

  9. O'fagain, C. (2003). Enzyme and Microbial Technology, 33, 137–149.

    Article  Google Scholar 

  10. Ge, J., Lu, D., Liu, Z., & Liu, Z. (2009). Biochemical Engineering Journal, 44(1), 53–69.

    Article  CAS  Google Scholar 

  11. Liu, W., Zhang, S., & Wang, P. (2009). Journal of Biotechnology, 139(1), 102–107.

    Article  CAS  Google Scholar 

  12. Hong, R., Fischer, N. O., Verma, A., Goodman, C. M., Emrick, T., & Rotello, V. M. (2004). Journal of the American Chemical Society, 126(3), 739–743.

    Article  CAS  Google Scholar 

  13. Saiyed, Z. M., Sharma, S., Godawat, R., Telang, S. D., & Ramchand, C. N. (2007). Journal of Biotechnology, 131(3), 240–244.

    Article  CAS  Google Scholar 

  14. Hong, J., Gong, P., Xu, D., Dong, L., & Yao, S. (2007). Journal of Biotechnology, 128(3), 597–605.

    Article  CAS  Google Scholar 

  15. Zhao, M., Wang, W., & Yang, C. (2008). Journal of Biotechnology, 136(Suppl.1), S435.

    Google Scholar 

  16. Dong, Q., Ouyang, L.-M., Yu, H.-L., & Xu, J.-H. (2010). Carbohydrate Research, 345, 1622–1626.

    Article  CAS  Google Scholar 

  17. Huang, C.-L., Cheng, W.-C., Yang, J.-C., Chi, M.-C., Chen, J.-H., Lin, H.-P., et al. (2010). Journal of Industrial Microbiology and Biotechnology, 37, 717–725.

    Article  CAS  Google Scholar 

  18. Andrad, L. H., Rebelo, L. P., Netto, C. G. C. M., & Toma, H. E. (2010). Journal of Molecular Catalysis B: Enzymatic, 66(1–2), 55–62.

    Article  Google Scholar 

  19. Rebelo, L. P., Netto, C. G. C. M., Toma, H. E., & Andrade, L. H. (2010). Journal of the Brazilian Chemical Society, 21(8), 1537–1542.

    Article  CAS  Google Scholar 

  20. Konwarh, R., Kalita, D., Mahanta, C., Mandal, M., & Karak, N. (2010). Applied Microbiology and Biotechnology, 87, 1983–1992.

    Article  CAS  Google Scholar 

  21. Cui, Y., Li, Y., Yang, Y., Liu, X., Lei, L., Zhou, L., et al. (2010). Journal of Biotechnology, 150(1), 171–174.

    Article  CAS  Google Scholar 

  22. Na, W., Wei, Q., Lan, J.-N., Nie, Z.-R., Sun, H., & Li, Q.-Y. (2010). Microporous and Mesoporous Materials, 134, 72–78.

    Article  CAS  Google Scholar 

  23. Kumar, R., Maitra, A. N., Patanjali, P. K., & Sharma, P. (2005). Biomaterials, 26, 6743–6753.

    Article  CAS  Google Scholar 

  24. Kumar, R. S., Das, S., & Maitra, A. (2005). Journal of Colloid and Interface Science, 284, 358–361.

    Article  Google Scholar 

  25. Yu, J., Tu, J., Zhao, F., & Zeng, B. (2010). Journal of Solid State Electrochemistry, 14, 1595–1600.

    Article  CAS  Google Scholar 

  26. Ge, Y., Ming, Y., Lu, D., Zhang, M., & Liu, Z. (2007). Biochemical Engineering Journal, 36(2), 93–99.

    Article  CAS  Google Scholar 

  27. Zeng, Y.-L., Huang, H.-W., Jiang, J.-H., Tian, M.-N., Li, C.-X., Shen, G.-L., et al. (2007). Analytica Chimica Acta, 604(2), 170–176.

    Article  CAS  Google Scholar 

  28. Yao, K., Zhu, Y., Yang, X., & Li, C. (2008). Materials Science and Engineering: C, 28(8), 1236–1241.

    Article  CAS  Google Scholar 

  29. Naik, R. R., Tomczak, M. M., Luckarift, H. R., Spain, J. C., & Stonea, M. O. (2004). Chemical Communications, 15, 1684–1685.

    Article  Google Scholar 

  30. Yang, Z., Shihui, S., & Chunjing, Z. (2008). Biochemical and Biophysical Research Communications, 367, 169–175.

    Article  CAS  Google Scholar 

  31. Yan, M., Ge, Y., Liu, Z., & Ouyang, P. K. (2006). Journal of the American Chemical Society, 128, 11008–11009.

    Article  CAS  Google Scholar 

  32. Kim, J., & Grate, J. W. (2003). Nano Letters, 3(9), 1219–1222.

    Article  CAS  Google Scholar 

  33. Kim, J., Grate, J. W., & Wang, P. (2006). Chemical Engineering Science, 61(3), 1017–1026.

    Article  CAS  Google Scholar 

  34. Hegedüs, I., & Nagy, E. (2009). Chemical Engineering Science, 64, 1053–1060.

    Article  Google Scholar 

  35. Dashtban, M., Maki, M., Leung, K. T., Mao, C., & Qin, W. (2010). Critical Reviews in Biotechnology, 30(4), 302–309.

    Article  CAS  Google Scholar 

  36. Hegedüs, I., & Nagy, E. (2009). Hungarian Journal of Industrial Chemistry, 37(2), 123–130.

    Google Scholar 

  37. Wang, P., Sergeeva, M. V., Lim, L., & Dordick, J. S. (1997). Nature Biotechnology, 15, 789–793.

    Article  CAS  Google Scholar 

  38. Meyer, J. D., & Manning, M. C. (1998). Pharmaceutical Research, 15(2), 188–193.

    Article  CAS  Google Scholar 

  39. Paradkar, V. M., & Dordick, J. S. (1994). Journal of the American Chemical Society, 116, 5009–5010.

    Article  CAS  Google Scholar 

  40. Ghose, T. K. (1987). Pure and Applied Chemistry, 59(2), 257–268.

    Article  CAS  Google Scholar 

  41. Uversky, V., & Kataeva, I. A. (2006). Cellulosome. In Molecular anatomy and physiology of proteinaceous machines. New York: Nova Science.

    Google Scholar 

  42. Gilkes, N. R., Henrissat, B., Kilburn, D. G., Miller, R. C., & Warren, R. A. J. (1991). Microbiological Reviews, 55, 303–315.

    CAS  Google Scholar 

  43. Zhao, X., Rignall, T. R., McCabe, C., Adney, W. S., & Himmel, M. E. (2008). Chemical Physics Letters, 460, 284–288.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Office for Research and Technology (NKTH TECH_08_A3/2-2008-0385) and by the National Development Agency grant (TÁMOP-4.2.1/B-09/1/KONV-2010-0003). The authors wish to thank József Takács (Department of Anatomy, Histology and Embryology of Semmelweis University, Budapest) for TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Endre Nagy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegedüs, I., Hancsók, J. & Nagy, E. Stabilization of the Cellulase Enzyme Complex as Enzyme Nanoparticle. Appl Biochem Biotechnol 168, 1372–1383 (2012). https://doi.org/10.1007/s12010-012-9863-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9863-9

Keywords

Navigation