Skip to main content
Log in

Evaluation of Enzyme Activity and Fiber Content of Soybean Cotyledon Fiber and Distiller’s Dried Grains with Solubles by Solid State Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To increase the value of coproducts from corn ethanol fermentation and soybean aqueous processing, distiller’s dried grains with solubles (DDGS) and soybean cotyledon fiber were used as the substrates for solid state fermentation (SSF) to improve feed digestibility. Aspergillus oryzae, Trichoderma reesei, and Phanerochaete chrysosporium were chosen as they produce desirable enzymes and are widely used in SSF for feed. The results showed that the cellulase and xylanase activities were significantly increased after 7 days of fermentation, and cellulose and hemicellulose degradation was also greatly increased. When soybean fiber was used as SSF substrate, the maximum activities of the cellulase and xylanase were 10.3 and 84.2 IU/g substrate (dry weight basis) after SSF treatment, respectively. However, the enzyme activities were relatively low in DDGS, and the growth of the three fungi was poor. The fungi grew better when soybean cotyledon fiber was added to DDGS, and cellulase and xylanase activity increased with the increase of soybean fiber content. Porosity was identified as an important factor for SSF because the addition of inert soybean hull alone improved the fungi growth significantly. These data suggest that the nutritional value of DDGS and soybean cotyledon fiber as monogastric animal feed could be greatly enhanced by SSF treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Denise, S. R., Daniel, P. S., António, A. V., Adilson, R. G., & José, A. T. (2008). Applied Biochemistry and Biotechnology, 147, 85–96.

    Article  Google Scholar 

  2. Nobrega de Moura, J. M. L., de Almeida, N. M., de Almeida, N. M., & Johnson, L. A. (2009). Journal of the American Oil Chemists’ Society, 86, 809–815.

    Article  Google Scholar 

  3. Hema, A., Trivedi, U. B., & Patel, K. C. (2006). Bioresource Technology, 97, 1161–1166.

    Article  Google Scholar 

  4. Graminha, E. B. N., Goncalves, A. Z. L., Pirota, R. D. P. B., Balsalobre, M. A. A., Da Silva, R., & Gomes, E. (2008). Animal Feed Science and Technology, 144, 1–22.

    Article  CAS  Google Scholar 

  5. Shankar, S. K., & Mulimani, V. H. (2007). Bioresource Technology, 98, 958–961.

    Article  CAS  Google Scholar 

  6. Nizamuddin, S., Sridevi, A., & Narasimha, G. (2008). African Journal of Biotechnology, 7, 1096–1100.

    CAS  Google Scholar 

  7. Deshpande, S. K., Bhotmange, M. G., & Chakrabarti, T. (2008). Indian Journal of Chemical Technology, 15, 449–456.

    CAS  Google Scholar 

  8. Mekala, N. K., Singhania, R. R., Sukumaran, R. K., & Ashok, P. (2008). Applied Biochemistry and Biotechnology, 151, 122–131.

    Article  CAS  Google Scholar 

  9. Dinis, M. J., Bezerra, R. M. F., & Nunes, F. (2009). Bioresource Technology, 100, 4829–4835.

    Article  CAS  Google Scholar 

  10. Shrestha, P., Rasmussen, M., & Khanal, S. K. (2008). Journal of Agricultural and Food Chemistry, 56, 3918–3924.

    Article  CAS  Google Scholar 

  11. Verma, P., & Madamwar, D. (2002). Applied Biochemistry and Biotechnology, 102–103, 109–118.

    Article  Google Scholar 

  12. Hoskins, B., & Lyons, M. (2009). Master Brewers Association of the Americas, 46, 1–7.

    Google Scholar 

  13. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  14. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270.

    Article  CAS  Google Scholar 

  15. Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Journal of Dairy Science, 74, 3583–3597.

    Article  Google Scholar 

  16. Van Soest, P. J., & Wine, R. H. (1968). Journal of the Association of Official Analytical Chemists, 51, 780–787.

    Google Scholar 

  17. Thornberry, H. H. (1950). Phytopathology, 40, 419–429.

    CAS  Google Scholar 

  18. Jones, A. L., & Ehret, G. R. (1976). Plant Disease Reporter, 60, 765–769.

    CAS  Google Scholar 

  19. Alberton, L. R., Luciana, P. S. V., Ricardo, A., Ricardo, C. F., José, R., & Carlos, R. S. (2009). Brazilian Archives of Biology and Technology, 52, 171–180.

    Article  Google Scholar 

  20. Fang, T. J., Liao, B. C., & Lee, S. C. (2010). New Biotechnology, 27, 25–32.

    Article  CAS  Google Scholar 

  21. Reeta, R. S. (2006). Indian Journal of Technology, 5, 332–336.

    Google Scholar 

  22. Xin, F. X., & Geng, A. L. (2010). Applied Biochemistry and Biotechnology, 162, 295–306.

    Article  CAS  Google Scholar 

  23. Feniksova, R. V., Tikhomirova, A. S., & Rakhleeva, E. E. (1960). Microbiologica, 29, 745–748.

    CAS  Google Scholar 

  24. Gibson, M., & Karges, K. (2006). In multi-state poultry feeding and nutrition conference, Indianapolis, IN, May 23–25. West Lafayette: Purdue University.

    Google Scholar 

  25. Spiehs, M. J., Whitney, M. H., & Shurson, G. C. (2002). Journal of Animal Science, 80, 2639–2645.

    CAS  Google Scholar 

  26. Cromwell, G. L., Herkelman, K. L., & Stahly, T. S. (1993). Journal of Animal Science, 71, 679–686.

    CAS  Google Scholar 

  27. Yu, P., Niu, Z., & Damiran, D. (2010). Journal of Agricultural and Food Chemistry, 58, 3460–3464.

    Article  CAS  Google Scholar 

  28. Martinez Amezcua, C., Parsons, C. M., & Noll, S. L. (2004). Poultry Science, 83, 971–976.

    CAS  Google Scholar 

  29. Lumpkins, B. S., & Batal, A. B. (2005). Poultry Science, 84, 581–586.

    CAS  Google Scholar 

  30. Liu, K. (2011). Journal of Agricultural and Food Chemistry, 59, 1508–1526.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank for the USDA Special Grant and to Professor Hans van Leeuwen of the Chemical and Biological Engineering Department for sharing the fungi used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Lio, J. & Wang, T. Evaluation of Enzyme Activity and Fiber Content of Soybean Cotyledon Fiber and Distiller’s Dried Grains with Solubles by Solid State Fermentation. Appl Biochem Biotechnol 167, 109–121 (2012). https://doi.org/10.1007/s12010-012-9665-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9665-0

Keywords

Navigation