Skip to main content

Advertisement

Log in

Expression and Structure/Function Relationships of Human Defensin 5

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The innate immunity utilizes a battery of broad-spectrum antibacterial cationic polypeptides (3–5 kDa), among them defensins. In humans, defensins are the first line of defense against pathogens and their expression has been implicated in several diseases. The antibacterial activity of defensins is generally ascribed to their overall positive charge, which enables them to disrupt bacterial membrane integrity and function, but their active surface has not been fully elucidated. To perform structural and functional assays, an efficient, high-yield, easy-to-use expression and purification system must be established. Up to now, most efforts to obtain larger quantities of active recombinant defensins have been only moderately successful. Herein, we report the establishment of an efficient, high-yield expression and purification system for human defensin 5 (HD-5). Using site-directed mutagenesis, we pinpoint several arginine residues and Y27 as important for HD-5 antibacterial activity. Our expression and purification system can be harnessed for structure/activity relationship studies of defensins in particular and small polypeptides in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ouellette, A. J. (2004). Defensin-mediated innate immunity in the small intestine. Best practice and research. Clinical Gastroenterology, 18, 405–419.

    CAS  Google Scholar 

  2. Cunliffe, R. N. (2003). Alpha-defensins in the gastrointestinal tract. Molecular Immunology, 40, 463–467.

    Article  CAS  Google Scholar 

  3. Porter, E. M., van Dam, E., Valore, E. V., & Ganz, T. (1997). Broad-spectrum antimicrobial activity of human intestinal defensin 5. Infection and Immunity, 65, 2396–2401.

    CAS  Google Scholar 

  4. Ghosh, D., Porter, E., Shen, B., Lee, S. K., Wilk, D., Drazba, J., et al. (2002). Paneth cell trypsin is the processing enzyme for human defensin-5. Nature Immunology, 3, 583–590.

    Article  CAS  Google Scholar 

  5. Wilson, C. L., Ouellette, A. J., Satchell, D. P., Ayabe, T., Lopez-Boado, Y. S., Stratman, J. L., et al. (1999). Regulation of intestinal a-defensin activation by the metalloproteinase matrilysin in innate host defense. Science, 286, 113–117.

    Article  CAS  Google Scholar 

  6. Salzman, N. H., Ghosh, D., Huttner, K. M., Paterson, Y., & Bevins, C. L. (2003). Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature, 422, 522–526.

    Article  CAS  Google Scholar 

  7. de Leeuw, E., Burks, S. R., Li, X., Kao, J. P., & Lu, W. (2007). Structure-dependent functional properties of human defensin 5. FEBS Letters, 581, 515–520.

    Article  Google Scholar 

  8. Hancock, R. E., & Sahl, H. G. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology, 24, 1551–1557.

    Article  CAS  Google Scholar 

  9. Wei, Q., Kim, Y. S., Seo, J. H., Jang, W. S., Lee, I. H., & Cha, H. J. (2005). Facilitation of expression and purification of an antimicrobial peptide by fusion with baculoviral polyhedrin in Escherichia coli. Applied and Environmental Microbiology, 71, 5038–5043.

    Article  CAS  Google Scholar 

  10. Wang, A., Wang, S., Shen, M., Chen, F., Zou, Z., Ran, X., et al. (2009). High level expression and purification of bioactive human alpha-defensin 5 mature peptide in Pichia pastoris. Applied Microbiology and Biotechnology, 84, 877–884.

    Article  CAS  Google Scholar 

  11. Xu, Z., Zhong, Z., Huang, L., Peng, L., Wang, F., & Cen, P. (2006). High-level production of bioactive human beta-defensin-4 in Escherichia coli by soluble fusion expression. Applied Microbiology and Biotechnology, 72, 471–479.

    Article  CAS  Google Scholar 

  12. Rohrl, J., Yang, D., Oppenheim, J. J., & Hehlgans, T. (2010). Specific binding and chemotactic activity of mBD4 and its functional orthologue hBD2 to CCR6-expressing cells. Journal of Biological Chemistry, 285, 7028–7034.

    Article  Google Scholar 

  13. Pazgier, M., & Lubkowski, J. (2006). Expression and purification of recombinant human alpha-defensins in Escherichia coli. Protein Expression and Purification, 49, 1–8.

    Article  CAS  Google Scholar 

  14. Satchell, D. P., Sheynis, T., Kolusheva, S., Cummings, J., Vanderlick, T. K., Jelinek, R., et al. (2003). Quantitative interactions between cryptdin-4 amino terminal variants and membranes. Peptides, 24, 1795–1805.

    Article  CAS  Google Scholar 

  15. Tanabe, H., Ayabe, T., Bainbridge, B., Guina, T., Ernst, R. K., Darveau, R. P., et al. (2005). Mouse paneth cell secretory responses to cell surface glycolipids of virulent and attenuated pathogenic bacteria. Infection and Immunity, 73, 2312–2320.

    Article  CAS  Google Scholar 

  16. de Leeuw, E., Rajabi, M., Zou, G., Pazgier, M., & Lu, W. (2009). Selective arginines are important for the antibacterial activity and host cell interaction of human alpha-defensin 5. FEBS Letters, 583, 2507–2512.

    Article  Google Scholar 

  17. Froy, O., Zilberberg, N., Gordon, D., Turkov, M., Gilles, N., Stankiewicz, M., et al. (1999). The putative bioactive surface of insect-selective scorpion excitatory neurotoxins. Journal of Biological Chemistry, 274, 5769–5776.

    Article  CAS  Google Scholar 

  18. Zilberberg, N., Froy, O., Loret, E., Cestele, S., Arad, D., Gordon, D., et al. (1997). Identification of structural elements of a scorpion alpha-neurotoxin important for receptor site recognition. Journal of Biological Chemistry, 272, 14810–14816.

    Article  CAS  Google Scholar 

  19. Oren, D. A., Froy, O., Amit, E., Kleinberger-Doron, N., Gurevitz, M., & Shaanan, B. (1998). An excitatory scorpion toxin with a distinctive feature: an additional alpha helix at the C terminus and its implications for interaction with insect sodium channels. Structure, 6, 1095–1103.

    Article  CAS  Google Scholar 

  20. Schagger, H., & von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166, 368–379.

    Article  CAS  Google Scholar 

  21. Szyk, A., Wu, Z., Tucker, K., Yang, D., Lu, W., & Lubkowski, J. (2006). Crystal structures of human alpha-defensins HNP4, HD5, and HD6. Protein Science, 15, 2749–2760.

    Article  CAS  Google Scholar 

  22. Froy, O., & Gurevitz, M. (1998). Membrane potential modulators: a thread of scarlet from plants to humans. The FASEB Journal, 12, 1793–1796.

    CAS  Google Scholar 

  23. Froy, O., & Gurevitz, M. (2004). Arthropod defensins illuminate the divergence of scorpion neurotoxins. Journal of Peptide Science, 10, 714–718.

    Article  CAS  Google Scholar 

  24. Lencer, W. I., Cheung, G., Strohmeier, G. R., Currie, M. G., Ouellette, A. J., Selsted, M. E., et al. (1997). Induction of epithelial chloride secretion by channel-forming cryptdins 2 and 3. Proceedings of the National Academy of Sciences of the United States of America, 94, 8585–8589.

    Article  CAS  Google Scholar 

  25. Ouellette, A. J., Satchell, D. P., Hsieh, M. M., Hagen, S. J., & Selsted, M. E. (2000). Characterization of luminal paneth cell alpha-defensins in mouse small intestine. Attenuated antimicrobial activities of peptides with truncated amino termini. Journal of Biological Chemistry, 275, 33969–33973.

    Article  CAS  Google Scholar 

  26. Yue, G., Merlin, D., Selsted, M. E., Lencer, W. I., Madara, J. L., & Eaton, D. C. (2002). Cryptdin 3 forms anion selective channels in cytoplasmic membranes of human embryonic kidney cells. American Journal of Physiology-Gastrointestinal and Liver Physiology, 282, G757–G765.

    CAS  Google Scholar 

  27. Valore, E. V., Martin, E., Harwig, S. S., & Ganz, T. (1996). Intramolecular inhibition of human defensin HNP-1 by its propiece. The Journal of Clinical Investigation, 97, 1624–1629.

    Article  CAS  Google Scholar 

  28. Lehrer, R. I., Jung, G., Ruchala, P., Andre, S., Gabius, H. J., & Lu, W. (2009). Multivalent binding of carbohydrates by the human alpha-defensin, HD5. Journal of Immunology, 183, 480–490.

    Article  CAS  Google Scholar 

  29. Kortemme, T., Kim, D. E., & Baker, D. (2004). Computational alanine scanning of protein-protein interfaces. Sci STKE, 2004, pl2.

Download references

Acknowledgments

We thank M. Gurevitz for his generous donation of the Bj-xtrIT clone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oren Froy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapnik, N., Levit, A., Niv, M.Y. et al. Expression and Structure/Function Relationships of Human Defensin 5. Appl Biochem Biotechnol 166, 1703–1710 (2012). https://doi.org/10.1007/s12010-012-9571-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9571-5

Keywords

Navigation