Skip to main content

Advertisement

Log in

Proteomic Analysis of Plasma Proteins in Diabetic Rats by 2D Electrophoresis and MALDI-TOF-MS

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Despite tremendous advances in our understanding of the molecular basis of diabetes mellitus, substantial gaps still remain in our understanding of disease pathogenesis and in the development of effective strategies for early diagnosis and treatment. The proteomic approach has offered many opportunities and challenges in identifying new marker proteins and therapeutic targets, i.e., using 2D-polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry. The differential protein expressions were analyzed in alloxan-induced diabetic rats treated with Cynodon dactylon leaf extract. The plant extract was administered for 15 days that resulted in a significant increase in plasma insulin and C-peptide levels. We have also identified four differentially expressed proteins from rat plasma. These four diabetes-associated proteins were broadly classified into three groups as per their function: (1) lipid metabolism-associated protein (Apo A-IV), (2) antioxidant activity-related proteins [preprohaptoglobin and heat shock proteins B8 (HspB8)], and (3) muscle function-related protein (TPM3). Apo A-IV, HspB8, and preprohaptoglobin may play a key role in the recovery of diabetes mellitus and also prevent the diabetes-associated complications such as prevention of oxidative stress due to free radical and free hemoglobin. These results show the value of proteomic approach in identifying the potential markers that may eventually serve as diagnostic markers or therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kingh, H., Aubert, R. E., & Heiman, W. H. (1998). Diabetes Care, 21, 1414–1431.

    Article  Google Scholar 

  2. Mooradian, A. D., Pinnas, J. L., Lung, C. C., Yahya, M. D., & Meredith, K. (1994). Neurochemical Research, 19, 123–128.

    Article  CAS  Google Scholar 

  3. Weets, I., Truyen, I., Philips, J. C., & Gorus, F. (2005). Revue Médicale de Liège, 60, 306–312.

    CAS  Google Scholar 

  4. Justin, V. G., & Venkatesh, T. (2000). Indian Journal of Clinical Biochemistry, 15, 171–173.

    Article  Google Scholar 

  5. Sudha, P., Remya, R., Smita, Z., Shobha, B., & Kumar, R. A. (2010). Evidence-Based Complementary and Alternative Medicine, 2011, 1–10.

    Google Scholar 

  6. Prince, P. S., Menon, V. P., & Pari, L. (1998). Journal of Ethnopharmacology, 61, 1–7.

    Article  CAS  Google Scholar 

  7. Fabricant, D. S., & Farnsworth, N. R. (2001). Environmental Health Perspectives, 109, 96–75.

    Google Scholar 

  8. Chellaiah, M., Muniappan, A., Nagappan, R., & Ignacimuthu, S. (2006). Journal of Ethnobiology and Ethnomedicine, 2, 1–10.

    Article  Google Scholar 

  9. Bnouham, M., Ziyyat, A., Mekhfi, H., Tahri, A. A., & Legssyer, A. (2006). Int. J. Diabetes and Metabolism, 4, 11–25.

    Google Scholar 

  10. Santosh, K. S., Prashant, K. R., Dolly, J., & Geeta, W. (2008). Evidence-based Complementary and Alternative Medicine, 5, 415–420.

    Article  Google Scholar 

  11. Bethel, C. M., Sciara, E. B., Estill, J. C., Bowers, J. E., Hanna, W., & Paterson, A. H. (2006). Theoretical and Applied Genetics, 112, 727–737.

    Article  CAS  Google Scholar 

  12. Muthu, C., Ayyanar, M., Raja, N., & Ignacimuthu, S. (2006). J. Ethanobio and Ethnomed, 2, 1–10.

    Article  Google Scholar 

  13. Ahmed, S., Reza, M. S., & Jabbar, A. (1994). Fitoterapia, 65, 463–464.

    Google Scholar 

  14. Atmani, F., Sadki, C., Aziz, M., Mimouni, M., & Hacht, B. (2009). Urological Research, 37, 75–82.

    Article  CAS  Google Scholar 

  15. Miraldi, E., Ferri, S., & Mostaghimi, V. (2001). Journal of Ethnopharmacology, 75, 77–87.

    Article  CAS  Google Scholar 

  16. Singh, S. K., Rai, P. K., Jaiswal, D., Rai, D. K., Sharma, B., & Watal, G. (2008). J. Ecophysiol. Occup. Hlth, 8, 195–199.

    CAS  Google Scholar 

  17. Karthik, D., & Ravikumar, S. (2011). Biomedical and Environmental Sciences, 24, 190–199.

    CAS  Google Scholar 

  18. Karthik, D., & Ravikumar, S. (2011). Biomedicine and Preventive Nutrition, 1, 49–56.

    Article  Google Scholar 

  19. Sundsten, T., & Ortsater, H. (2009). Molecular and Cellular Endocrinology, 297, 93–103.

    Article  CAS  Google Scholar 

  20. Zhanga, S. X., Sunb, H., Sunb, W. J., Jiao, G. Z., & Wang, X. J. (2010). Journal of Pharmaceutical and Biomedical Analysis, 53, 1011–1014.

    Article  Google Scholar 

  21. Macaulay, I. C., Carr, P., Gusnanto, A., Ouwehand, W. H., & Fitzgerald, D. (2005). The Journal of Clinical Investigation, 115, 3370–3377.

    Article  CAS  Google Scholar 

  22. Vidal, B. C., & Bonventre, J. V. (2005). Clinical Science (London, England), 109, 421–430.

    Article  CAS  Google Scholar 

  23. Roberts, K., Bhatia, K., Stanton, P., & Lord, R. (2004). Proteomics, 4, 784–792.

    Article  CAS  Google Scholar 

  24. Liu, J., Shen, J. J., & Tanzillo-Swarts, A. (2003). Oncogene, 22, 1475–1485.

    Article  CAS  Google Scholar 

  25. Overgaard, A. J., Hansen, H. G., Lajer, M., Pedersen, L., Tarnow, L., Rossing, P., McGuire, J. N., & Pociot, F. (2010). Proteome Science, 8, 1–11.

    Article  Google Scholar 

  26. Hung, P. H., Lu, Y. C., Chen, Y. W., Chou, H. C., Lyu, P. C., Lee, Y. R., & Chan, H. L. (2011). Journal of Integrated Omics, 1, 151–156.

    Google Scholar 

  27. Zhang, R., Barker, L., & Pinchev, D. (2004). Proteomics, 4, 244–256.

    Article  CAS  Google Scholar 

  28. Sundsten, T., Ostenson, C. G., & Bergsten, P. (2008). Diabetes/Metabolism Research and Reviews, 24, 148–154.

    Article  CAS  Google Scholar 

  29. Bradford, M. A. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  30. O’Farrell, P. H. (1975). Journal of Biological Chemistry, 250, 4007–4021.

    Google Scholar 

  31. Kumar, S., Tamura, K., & Nei, M. (2004). Briefings in Bioinformatics, 5, 150–163.

    Article  CAS  Google Scholar 

  32. Szkudelski, T. (2001). Physiological Research, 50, 537–546.

    CAS  Google Scholar 

  33. Venkateswaran, S., & Pari, L. (2003). Journal of Ethnopharmacology, 84, 163–168.

    Article  CAS  Google Scholar 

  34. Satyanarayana, K., Mangathayaru, V., & Shreekanth, J. (2001). Indian Journal of Pharmaceutical Sci, 63, 30–55.

    Google Scholar 

  35. Chakravarti, B. K., Gupta, S., & Gambir, S. S. (1980). Indian Journal of Pharmacol, 12, 123–127.

    Google Scholar 

  36. Green, P. H. R., Glickman, R. M., Riley, J. W., & Qinet, E. (1980). The Journal of Clinical Investigation, 65, 911–919.

    Article  CAS  Google Scholar 

  37. Fukagawa, K., Gou, H. M., Wolf, R., & Tso, P. (1994). American Journal of Physiology, 267, R1385–R1390.

    CAS  Google Scholar 

  38. Pennacchio, L. A., Olivier, M., Hubacek, J., Krauss, R. M., Rubin, E. M., & Cohen, J. C. (2002). Human Molecular Genetics, 11, 3031–3038.

    Article  CAS  Google Scholar 

  39. Apfelbaum, T. F., Davidson, N. O., & Glickman, R. M. (1987). American Journal of Physiology, 252, G662–G666.

    CAS  Google Scholar 

  40. Guyard-Dangremont, V., Lagrost, L., & Gambert, P. (1994). Journal of Lipid Research, 35, 982–992.

    CAS  Google Scholar 

  41. Ostos, M. A., Conconi, M., Vergnes, L., Baroukh, N., Ribalta, J., Girona, J., Caillaud, J. M., Ochoa, A., & Zakin, M. M. (2001). Vasc. Biol, 21, 1023–1028.

    Article  CAS  Google Scholar 

  42. Kronenberg, F., Kuen, E., Ritz, E., Junker, R., Konig, P., Kraatz, G., Lhotta, K., Mann, J. F. E., Muller, G. A., & Neyer, U. (2002). Journal of the American Society of Nephrology, 13, 461–469.

    CAS  Google Scholar 

  43. Chakrabarti, R., Reeba, K., Vikramadithyan, Mullangi, R., Sharma, V. M., Jagadheshan, H., Rao, Y. N., Sairam, P., & Rajagopalan, R. (2002). Journal of Ethnopharmacology, 81, 343–349.

    Article  Google Scholar 

  44. Baynes, J. W. (1991). Diabetes, 40, 405–412.

    Article  CAS  Google Scholar 

  45. Sabu, M. C., & Kuttan, R. (2009). Indian Journal of Experimental Biology, 47, 270–275.

    CAS  Google Scholar 

  46. Nagy, E., Jeney, V., Yachie, A., Szabó, R. P., Wagner, O., Vercellotti, G. M., Eaton, J. W., Balla, G., & Balla, J. (2005). Cellular and Molecular Biology (Noisy-le-Grand, France), 51, 377–385.

    CAS  Google Scholar 

  47. Lim, Y. K., Jenner, A., Ali, A. B., Wang, Y., Hsu, S. I., Chong, S. M., Baumman, H., Halliwell, B., & Lim, S. K. (2000). Kidney International, 58, 1033–1044.

    Article  CAS  Google Scholar 

  48. Annie, J. K., Chaoxing, Y., Sun, W. T., Douglas, H., James, E. E., Karin, M. G., John, L., Kejian, Y., Dennis, L. G., John, P. M., Dale, L. G., Aldo, A. R., & Rita, B. (2010). Experimental Biology and Medicine, 235, 1328–1337.

    Article  Google Scholar 

  49. Sadrzadeh, S. M., & Bozorgmehr, J. (2004). American Journal of Clinical Pathology, 121, S97–S104.

    Google Scholar 

  50. Mustafa, A., Niku, O., Jani, L., David, E. L., Chandan, K. S., & Sashwati, R. (2009). Current Protein & Peptide Science, 10, 85–95.

    Article  Google Scholar 

  51. Kathy, P., Grace, A., Solaro, R. J., Ingrid, G., John, N. L., Greg, P. B., Ganapathy, J., Erin, L., Pieter, P. D., Konhilas, J. P., Thomas, C. I., & David, F. W. (2002). American Journal of Physiology - Heart and Circulatory Physiology, 283, H1344–H1353.

    Google Scholar 

  52. Nigel, G. L., Stephen, D. W., Patrick, A. A., Shellie, D., Karyn, B., Chris, K., Peter, B., Sue, W., Hugh, W., Donald, R. L., & Eric, H. (1995). Nature Genetics, 9, 75–79.

    Article  Google Scholar 

  53. Simoneau, J., & Kelley, D. E. (1997). Journal of Applied Physiology, 83, 166–171.

    CAS  Google Scholar 

  54. Chason, D. P., Fleckenstein, J. L., Burns, D. K., & Rojas, G. (1996). Skeletal Radiology, 25, 127–132.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The first author (D.K.) deeply owes his sincere thanks to Merck Millipore-MSPL, Bengaluru, KA, India for granting special permission to PhD. The authors thankful to the Department of Biotechnology, PRIST University, Thanjavur, Tamil Nadu, India for providing lab facilities. The authors are grateful to Prof. Dipankar Chatterji and Mr. Sathish K, Molecular Biophysics Unit, Indian Institute of Science (IISc), Bangalore, Karnataka, India for providing MALDI-TOF-MS/MS facility, and for their invaluable and helpful discussions.

Conflict of interest

The authors are not having any conflict of interest related to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ravikumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karthik, D., Ilavenil, S., Kaleeswaran, B. et al. Proteomic Analysis of Plasma Proteins in Diabetic Rats by 2D Electrophoresis and MALDI-TOF-MS. Appl Biochem Biotechnol 166, 1507–1519 (2012). https://doi.org/10.1007/s12010-012-9544-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9544-8

Keywords

Navigation