Skip to main content

Advertisement

Log in

Effects of Alcohols and Compatible Solutes on the Activity of β-Galactosidase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

During alcoholic fermentation, the products build up and can, ultimately, kill the organism due to their effects on the cell’s macromolecular systems. The effects of alcohols on the steady-state kinetic parameters of the model enzyme β-galactosidase were studied. At modest concentrations (0 to 2 M), there was little effect of methanol, ethanol, propanol and butanol on the kinetic constants. However, above these concentrations, each alcohol caused the maximal rate, V max, to fall and the Michaelis constant, K m, to rise. Except in the case of methanol, the chaotropicity of the solute, rather than its precise chemical structure, determined and can, therefore, be used to predict inhibitory activity. Compounds which act as compatible solutes (e.g. glycerol and other polyols) generally reduced enzyme activity in the absence of alcohols at the concentration tested (191 mM). In the case of the ethanol- or propanol-inhibited β-galactosidase, the addition of compatible solutes was unable to restore the enzyme’s kinetic parameters to their uninhibited levels; addition of chaotropic solutes such as urea tended to enhance the effects of these alcohols. It is possible that the compatible solutes caused excessive rigidification of the enzyme’s structure, whereas the alcohols disrupt the tertiary and quaternary structure of the protein. From the point of view of protecting enzyme activity, it may be unwise to add compatible solutes in the early stages of industrial fermentations; however, there may be benefits as the alcohol concentration increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hallsworth, J. E. (1998). Journal of Fermentation and Bioengineering, 85, 125–137.

    Article  CAS  Google Scholar 

  2. Hallsworth, J. E., Heim, S., & Timmis, K. N. (2003). Environmental Microbiology, 5, 1270–1280.

    Article  CAS  Google Scholar 

  3. Hallsworth, J. E., Prior, B. A., Nomura, Y., Iwahara, M., & Timmis, K. N. (2003). Applied and Environmental Microbiology, 69, 7032–7034.

    Article  CAS  Google Scholar 

  4. Bhaganna, P., Volkers, R. J., Bell, A. N., Kluge, K., Timson, D. J., McGrath, J. W., et al. (2010). Microbial Biotechnology, 3, 701–716.

    Article  CAS  Google Scholar 

  5. Nicolaou, S. A., Gaida, S. M., & Papoutsakis, E. T. (2010). Metabolic Engineering, 12, 307–331.

    Article  CAS  Google Scholar 

  6. Shifrin, S., & Hunn, G. (1969). Archives of Biochemistry and Biophysics, 130, 530–535.

    Article  CAS  Google Scholar 

  7. Matsue, S., & Miyawaki, O. (2000). Enzyme MicrobTechnol, 26, 342–347.

    Article  CAS  Google Scholar 

  8. Pereira-Rodriguez, A., Fernandez-Leiro, R., Gonzalez-Siso, M. I., Cerdan, M. E., Becerra, M., & Sanz-Aparicio, J. (2012). Journal of Structural Biology, 177, 392–401.

    Article  CAS  Google Scholar 

  9. Dickson, R. C., Dickson, L. R., & Markin, J. S. (1979). Journal of Bacteriology, 137, 51–61.

    CAS  Google Scholar 

  10. Becerra, M., Cerdan, E., & Siso, M. I. G. (1998). Biotechnology Techniques, 12, 253–256.

    Article  CAS  Google Scholar 

  11. Kim, C. S., Ji, E. S., & Oh, D. K. (2003). Biotechnology Letters, 25, 1769–1774.

    Article  CAS  Google Scholar 

  12. Juers, D. H., Matthews, B. W., & Huber, R. E. (2012). Protein Science. doi:10.1002/pro.2165.

  13. Maksimainen, M., Paavilainen, S., Hakulinen, N., & Rouvinen, J. (2012). FEBS Journal, 279, 1788–1798.

    Article  CAS  Google Scholar 

  14. Juers, D. H., Heightman, T. D., Vasella, A., McCarter, J. D., Mackenzie, L., Withers, S. G., et al. (2001). Biochemistry, 40, 14781–14794.

    Article  CAS  Google Scholar 

  15. Richard, J. P., Huber, R. E., Heo, C., Amyes, T. L., & Lin, S. (1996). Biochemistry, 35, 12387–12401.

    Article  CAS  Google Scholar 

  16. Richard, J. P., Huber, R. E., Lin, S., Heo, C., & Amyes, T. L. (1996). Biochemistry, 35, 12377–12386.

    Article  CAS  Google Scholar 

  17. Marquardt, D. (1963). SIAM Journal on Applied Mathematics, 11, 431–441.

    Article  Google Scholar 

  18. Cray, J. A., Russell, J. T., Timson, D. J., Singhal, R. S., & Hallsworth, J. E. (2013). Environmental Microbiology. doi:10.1111/1462-2920.12018.

  19. Hallsworth, J. E., Nomura, Y., & Iwahara, I. (1998). Journal of Fermentation and Bioengineering 86, 451–456.

    Google Scholar 

  20. Hallsworth, J. E., Yakimov, M. M., Golyshin, P. N., Gillion, J. L., de D’Auria, G., La Lima Alves, F., et al. (2007). Environmental Microbiology, 9, 801–813.

    Article  CAS  Google Scholar 

  21. Sinnott, M. L., & Souchard, I. J. (1973). Biochemical Journal, 133, 89–98.

    CAS  Google Scholar 

  22. Richard, J. P., Westerfeld, J. G., Lin, S., & Beard, J. (1995). Biochemistry, 34, 11713–11724.

    Article  CAS  Google Scholar 

  23. Cornish-Bowden, A. (2004). Fundamentals of enzyme kinetics. London: Portland Press.

    Google Scholar 

  24. Liu, G. X., Kong, J., Lu, W. W., Kong, W. T., Tian, H., Tian, X. Y., et al. (2011). Journal of Dairy Science, 94, 5811–5820.

    Article  CAS  Google Scholar 

  25. Brown, A. D. (1978). Advances in Microbial Physiology, 17, 181–242.

    Article  CAS  Google Scholar 

  26. Goodey, N. M., & Benkovic, S. J. (2008). Nature Chemical Biology, 4, 474–482.

    Article  CAS  Google Scholar 

  27. Kristiansson, H., & Timson, D. J. (2011). ChemBioChem, 12, 2081–2087.

    Article  CAS  Google Scholar 

  28. Brown, A. D. (1990). Microbial water stress physiology. Chichester: Wiley.

    Google Scholar 

  29. Williams, J. P., & Hallsworth, J. E. (2009). Environmental Microbiology, 11, 3292–3308.

    Article  CAS  Google Scholar 

  30. Wickson, V. M., & Huber, R. E. (1969). Biochimica et Biophysica Acta, 181, 419–425.

    Article  CAS  Google Scholar 

  31. Thomas, K. C., Hynes, S. H., & Ingledew, W. M. (1993). Journal of Industrial Microbiology and Biotechnology, 12, 93–98.

    Article  CAS  Google Scholar 

  32. Mansure, J. J., Panek, A. D., Crowe, L. M., & Crowe, J. H. (1994). Biochimica et Biophysica Acta, 1191, 309–316.

    Article  CAS  Google Scholar 

  33. Madeira, A., Leitao, L., Soveral, G., Dias, P., Prista, C., Moura, T., et al. (2010). FEMS Yeast Research, 10, 252–258.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

JEH acknowledges funding from the Biotechnology and Biological Sciences Research Council (project BBF0034711). AWNB received a postgraduate studentship from the Department of Agriculture and Rural Development Northern Ireland and EM received a Nuffield Foundation Science Bursary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Timson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, A.N.W., Magill, E., Hallsworth, J.E. et al. Effects of Alcohols and Compatible Solutes on the Activity of β-Galactosidase. Appl Biochem Biotechnol 169, 786–794 (2013). https://doi.org/10.1007/s12010-012-0003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0003-3

Keywords

Navigation