Skip to main content
Log in

Maximum Saccharification of Cellulose Complex by an Enzyme Cocktail Supplemented with Cellulase from Newly Isolated Aspergillus fumigatus ECU0811

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Either the natural biodegradation process or the industrial hydrolytic process requires synergistic interactions between various cellulases. However, it is sometimes impeded by low hydrolytic rate of existing cellulases and the lack of accessory enzymes. Herein, the ability of a commercial cellulase (Spezyme CP, from Genencor) to degrade steam explosion-pretreated corn stover was significantly improved. Firstly, a fungal cellulase producer, Aspergillus fumigatus ECU0811, was isolated from hundreds of soil samples. A 96-deep-well microscale-based platform was developed here to reduce the labor-intensive screening work and proved to be consistent with macroscale screening work. After optimization of fermentation, 3% corn cob could induce A. fumigatus ECU0811 to yield the highest cellulase production. Based on the high activities of β-glucosidase and xylanase by A. fumigatus ECU0811, 0.91 and 125 U/mg protein, respectively, an enzyme cocktail was composed with a fixed dosage of Spezyme CP (CPCel) at 14.2 filter paper units (FPU)/g glucan and varied dosages of A. fumigatus cellulase (AFCel). Consequently, the glucan-to-glucose conversion of corn stover was increased from 25.6% in the presence of CPCel at a dosage of 14.2 FPU/g glucan to 99.5% in the presence of the enzyme cocktail (14.2 FPU CPCel plus 1.21 FPU AFCel per gram of glucan). On the other side, it reduced the total protein amount of CPCel by as much as tenfold, which extremely improved the hydrolytic rate of Spezyme CP and reduced its dosage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., et al. (2007). Science, 315, 804–807.

    Article  CAS  Google Scholar 

  2. Percival Zhang, Y. H., Himmel, M. E., & Mielenz, J. R. (2006). Biotechnology Advances, 24, 452–481.

    Article  CAS  Google Scholar 

  3. Perez, J., Munoz-Dorado, J., de la Rubia, T., & Martinez, J. (2002). International Microbiology, 5, 53–63.

    Article  CAS  Google Scholar 

  4. Service, R. F. (2007). Science, 315, 1488–1491.

    Article  CAS  Google Scholar 

  5. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  6. Sanchez, O. J., & Cardona, C. A. (2008). Bioresource Technology, 99, 5270–5295.

    Article  CAS  Google Scholar 

  7. Baker, J. O., Ehrman, C. I., Adney, W. S., Thomas, S. R., & Himmel, M. E. (1998). Applied Biochemistry and Biotechnology, 70–72, 395–403.

    Article  Google Scholar 

  8. Berlin, A., Maximenko, V., Gilkes, N., & Saddler, J. (2007). Biotechnology and Bioengineering, 97, 287–296.

    Article  CAS  Google Scholar 

  9. Meyer, A. S., Rosgaard, L., & Sorensen, H. R. (2009). Journal of Cereal Science, 50, 337–344.

    Article  CAS  Google Scholar 

  10. Tu, M. B., Chandra, R. P., & Saddler, J. N. (2007). Biotechnology Progress, 23, 1130–1137.

    Article  CAS  Google Scholar 

  11. Wu, Z., & Lee, Y. Y. (1998). Applied Biochemistry and Biotechnology, 70–72, 479–492.

    Article  Google Scholar 

  12. Yang, B., Willies, D. M., & Wyman, C. E. (2006). Biotechnology and Bioengineering, 94, 1122–1128.

    Article  CAS  Google Scholar 

  13. Reczey, K., Brumbauer, A., Bollok, M., Szengyel, Z., & Zacchi, G. (1998). Applied Biochemistry and Biotechnology, 70–72, 225–235.

    Article  Google Scholar 

  14. Chen, H. Z., Hayn, M., & Esterbauer, H. (1992). Biochimica et Biophysica Acta, 1121, 54–60.

    Article  CAS  Google Scholar 

  15. Golias, H., Dumsday, G. J., Stanley, G. A., & Pamment, N. B. (2000). Biotechnology Letters, 22, 617–621.

    Article  CAS  Google Scholar 

  16. Nieves, R. A., Ehrman, C. I., Adney, W. S., Elander, R. T., & Himmel, M. E. (1998). World Journal of Microbiology and Biotechnology, 14, 301–304.

    Article  CAS  Google Scholar 

  17. Sternberg, D., Vijayakumar, P., & Reese, E. T. (1977). Canadian Journal of Microbiology, 23, 139–147.

    Article  CAS  Google Scholar 

  18. Chandrasekaran, A., Bharadwaj, R., Park, J. I., Sapra, R., Adams, P. D., & Singh, A. K. (2010). Journal of Proteome Research, 9, 5677–5683.

    Article  CAS  Google Scholar 

  19. Chundawat, S. P., Balan, V., & Dale, B. E. (2008). Biotechnology and Bioengineering, 99, 1281–1294.

    Article  CAS  Google Scholar 

  20. King, B. C., Donnelly, M. K., Bergstrom, G. C., Walker, L. P., & Gibson, D. M. (2009). Biotechnology and Bioengineering, 102, 1033–1044.

    Article  CAS  Google Scholar 

  21. Bharadwaj, R., Wong, A., Knierim, B., Singh, S., Holmes, B. M., Auer, M., et al. (2011). Bioresource Technology, 102, 1329–1337.

    Article  CAS  Google Scholar 

  22. Cianchetta, S., Galletti, S., Burzi, P. L., & Cerato, C. (2010). Biotechnology and Bioengineering, 107, 461–468.

    Article  CAS  Google Scholar 

  23. Kim, Y. S., Jung, H. C., & Pan, J. G. (2000). Applied and Environmental Microbiology, 66, 788–793.

    Article  CAS  Google Scholar 

  24. Mandels, M., & Weber, J. (1969). Journal of the American Chemical Society, 95, 391–414.

    CAS  Google Scholar 

  25. Xiao, Z., Storms, R., & Tsang, A. (2004). Biotechnology and Bioengineering, 88, 832–837.

    Article  CAS  Google Scholar 

  26. Anderson, I. C., Campbell, C. D., & Prosser, J. I. (2003). Environmental Microbiology, 5, 36–47.

    Article  CAS  Google Scholar 

  27. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., et al. (1985). Analytical Biochemistry, 150, 76–85.

    Article  CAS  Google Scholar 

  28. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  29. Yu, H. L., Xu, J. H., Lu, W. Y., & Lin, G. Q. (2007). Enzyme and Microbial Technology, 40, 354–361.

    Article  CAS  Google Scholar 

  30. Shi, Q. Q., Sun, J., Yu, H. L., Li, C. X., Bao, J., & Xu, J. H. (2011). Applied Biochemistry and Biotechnology, 164, 819–830.

    Article  CAS  Google Scholar 

  31. Juhász, T., Szengyel, Z., Réczey, K., Siika-Aho, M., & Viikari, L. (2005). Process Biochemistry, 40, 3519–3525.

    Article  Google Scholar 

  32. Olsson, L., Christensen, T. M. I. E., Hansen, K. P., & Palmqvist, E. A. (2003). Enzyme and Microbial Technology, 33, 612–619.

    Article  CAS  Google Scholar 

  33. Wang, C. H., Hseu, T. H., & Huang, C. M. (1988). Journal of Biotechnology, 9, 47–59.

    Article  Google Scholar 

  34. Reese, E. T., & Maguire, A. (1969). Applied and Environmental Microbiology, 17, 242–245.

    CAS  Google Scholar 

  35. Sherief, A. A., El-Tanash, A. B., & Atia, N. (2010). Research Journal of Microbiology, 5, 199–211.

    Article  CAS  Google Scholar 

  36. Wase, D. A. J., Raymahasay, S., & Wang, C. W. (1985). Enzyme and Microbial Technology, 7, 225–229.

    CAS  Google Scholar 

  37. Gusakov, A. V., Salanovich, T. N., Antonov, A. I., Ustinov, B. B., Okunev, O. N., Burlingame, R., et al. (2007). Biotechnology and Bioengineering, 97, 1028–1038.

    Article  CAS  Google Scholar 

  38. Zhang, M., Su, R., Qi, W., & He, Z. (2010). Applied Biochemistry and Biotechnology, 160, 1407–1414.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 20902023 & 31071604), Ministry of Science and Technology, P.R. China (Nos. 2009CB724706), and China National Special Fund for State Key Laboratory of Bioreactor Engineering (No. 2060204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-He Xu.

Additional information

Dan Wang and Jie Sun contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Sun, J., Yu, HL. et al. Maximum Saccharification of Cellulose Complex by an Enzyme Cocktail Supplemented with Cellulase from Newly Isolated Aspergillus fumigatus ECU0811. Appl Biochem Biotechnol 166, 176–186 (2012). https://doi.org/10.1007/s12010-011-9414-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9414-9

Keywords

Navigation