Skip to main content
Log in

Inhibition Effects of Dilute-Acid Prehydrolysate of Corn Stover on Enzymatic Hydrolysis of Solka Floc

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Dilute-acid pretreatment liquor (PL) produced at NREL through a continuous screw-driven reactor was analyzed for sugars and other potential inhibitory components. Their inhibitory effects on enzymatic hydrolysis of Solka Floc were investigated. When the PL was mixed into the enzymatic hydrolysis reactor at 1:1 volume ratio, the glucan and xylan digestibility decreased by 63% and 90%, respectively. The tolerance level of the enzyme for each inhibitor was determined. Of the identified degradation components, acetic acid was found to be the strongest inhibitor for cellulase activity, as it decreased the glucan yield by 10% at 1 g/L. Among the sugars, cellobiose and glucose were found to be strong inhibitors to glucan hydrolysis, whereas xylose is a strong inhibitor to xylan hydrolysis. Xylo-oligomers inhibit xylan digestibility more strongly than the glucan digestibility. Inhibition by the PL was higher than that of the simulated mixture of the identifiable components. This indicates that some of the unidentified degradation components, originated mostly from lignin, are potent inhibitors to the cellulase enzyme. When the PL was added to a simultaneous saccharification and co-fermentation using Escherichia coli KO11, the bioprocess was severely inhibited showing no ethanol formation or cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hendriks, A. T. W. M., & Zeeman, G. (2009). Bioresource Technology, 100, 10–18.

    Article  CAS  Google Scholar 

  2. Grabber, J. H. (2005). Crop Science, 45, 820–831.

    Article  CAS  Google Scholar 

  3. Kenji, I., Lam, T. B.-T., & Stone, B. A. (1994). Plant physiology, 104, 315–320.

    Google Scholar 

  4. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  5. Schell, D., Farmer, J., Newman, M., & McMillan, J. (2003). Applied Biochemistry and Biotechnology, 105, 69–85.

    Article  Google Scholar 

  6. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  7. Fenske, J. J., Griffin, D. A., & Penner, M. H. (1998). Journal of Industrial Microbiology and Biotechnology, 20, 364–368.

    Article  CAS  Google Scholar 

  8. Saha, B. (2003). Journal of Industrial Microbiology and Biotechnology, 30, 279–291.

    Article  CAS  Google Scholar 

  9. Bothast, R. J., Nichols, N. N., & Dien, B. S. (1999). Biotechnology Progress, 15, 867–875.

    Article  CAS  Google Scholar 

  10. Ho, N., Chen, Z., Brainard, A. and Sedlak, M. (1999) Recent Progress in Bioconversion of Lignocellulosics, pp. 163–192.

  11. Lebeau, T., Jouenne, T., & Junter, G. A. (1997). Enzyme and Microbial Technology, 21, 265–272.

    Article  CAS  Google Scholar 

  12. Wright, J., Wyman, C., & Grohmann, K. (1988). Applied Biochemistry and Biotechnology, 18, 75–90.

    Article  CAS  Google Scholar 

  13. Delgenes, J. P., Moletta, R., & Navarro, J. M. (1996). Enzyme and Microbial Technology, 19, 220–225.

    Article  CAS  Google Scholar 

  14. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Applied Microbiology and Biotechnology, 66, 10–26.

    Article  CAS  Google Scholar 

  15. Luo, C., Brink, D. L., & Blanch, H. W. (2002). Biomass and Bioenergy, 22, 125–138.

    Article  CAS  Google Scholar 

  16. Palmqvist, E., Grage, H., Meinander, N. Q., & Hahn-Hägerdal, B. (1999). Biotechnology and Bioengineering, 63, 46–55.

    Article  CAS  Google Scholar 

  17. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Bioresource Technology, 74, 17–24.

    Article  CAS  Google Scholar 

  18. Taherzadeh, M. J., Eklund, R., Gustafsson, L., Niklasson, C., & Liden, G. (1997). Industrial and Engineering Chemistry Research, 36, 4659–4665.

    Article  CAS  Google Scholar 

  19. Taherzadeh, M. J., Gustafsson, L., Niklasson, C., & Lidén, G. (1999). Journal of Bioscience and Bioengineering, 87, 169–174.

    Article  CAS  Google Scholar 

  20. Oliva, J. M., Negro, M. J., Sáez, F., Ballesteros, I., Manzanares, P., González, A., et al. (2006). Process Biochemistry, 41, 1223–1228.

    Article  CAS  Google Scholar 

  21. Sanchez, B., & Bautista, J. (1988). Enzyme and Microbial Technology, 10, 315–318.

    Article  CAS  Google Scholar 

  22. Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A., & Alfani, F. (2004). Biotechnology Progress, 20, 200–206.

    Article  CAS  Google Scholar 

  23. Hodge, D. B., Karim, M. N., Schell, D. J., & McMillan, J. D. (2008). Bioresource Technology, 99, 8940–8948.

    Article  CAS  Google Scholar 

  24. Jing, X., Zhang, X., & Bao, J. (2009). Applied Biochemistry and Biotechnology, 159, 696–707.

    Article  CAS  Google Scholar 

  25. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Bioresource Technology, 74, 25–33.

    Article  CAS  Google Scholar 

  26. Mes-Hartree, M., Hogan, C., Hayes, R. D., & Saddler, J. N. (1983). Biotechnology Letters, 5, 101–106.

    Article  CAS  Google Scholar 

  27. Taherzadeh, M. J., Niklasson, C., & Liden, G. (1997). Chemical Engineering Science, 52, 2653–2659.

    Article  CAS  Google Scholar 

  28. Zhu, Y., Kim, T. H., Lee, Y. Y., Chen, R. and Elander, R. T. (2006) Twenty-Seventh Symposium on Biotechnology for Fuels and Chemicals: ABAB Symposium, Humana Press, pp. 586–598.

  29. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Bioresource Technology, 96, 2026–2032.

    Article  CAS  Google Scholar 

  30. Almeida, J., Bertilsson, M., Gorwa-Grauslund, M., Gorsich, S., & Lidén, G. (2009). Applied Microbiology and Biotechnology, 82, 625–638.

    Article  CAS  Google Scholar 

  31. Boyer, L. J., Vega, J. L., Klasson, K. T., Clausen, E. C., & Gaddy, J. L. (1992). Biomass and Bioenergy, 3, 41–48.

    Article  CAS  Google Scholar 

  32. Taherzadeh, M. J., Gustafsson, L., Niklasson, C., & Lidén, G. (2000). Journal of Bioscience and Bioengineering, 90, 374–380.

    CAS  Google Scholar 

  33. Jin, F., Zhou, Z., Moriya, T., Kishida, H., Higashijima, H., & Enomoto, H. (2005). Environmental Science and Technology, 39, 1893–1902.

    Article  CAS  Google Scholar 

  34. Jin, F., Zhou, Z., Kishita, A., Enomoto, H., Kishida, H., & Moriya, T. (2007). Chemical Engineering Research and Design, 85, 201–206.

    Article  CAS  Google Scholar 

  35. Eriksson, T., Börjesson, J., & Tjerneld, F. (2002). Enzyme and Microbial Technology, 31, 353–364.

    Article  CAS  Google Scholar 

  36. Yang, B., & Wyman, C. E. (2006). Biotechnology and Bioengineering, 94, 611–617.

    Article  CAS  Google Scholar 

  37. Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., et al. (2006). Journal of Biotechnology, 125, 198–209.

    Article  CAS  Google Scholar 

  38. Zhao, Y., Wu, B., Yan, B., & Gao, P. (2004). Science in China. Series C, Life Sciences, 47, 18–24.

    Article  CAS  Google Scholar 

  39. Holtzapple, M., Cognata, M., Shu, Y., & Hendrickson, C. (1990). Biotechnology and Bioengineering, 36, 275–287.

    Article  CAS  Google Scholar 

  40. Dekker, R. F. H. (1986). Biotechnology and Bioengineering, 28, 1438–1442.

    Article  CAS  Google Scholar 

  41. Saha, B. C., Freer, S. N., & Bothast, R. J. (1994). Applied and Environmental Microbiology, 60, 3774–3780.

    CAS  Google Scholar 

  42. Toyama, N., & Ogawa, K. (1975). Biotechnology and Bioengineering Symposium, 5, 225–244.

    CAS  Google Scholar 

  43. Yun, S.-I., Jeong, C.-S., Chung, D.-K., & Choi, H.-S. (2001). Bioscience Biotechnology, and Biochemistry, 65, 2028–2032.

    Article  CAS  Google Scholar 

  44. Xiao, Z., Zhang, X., Gregg, D., & Saddler, J. (2004). Applied Biochemistry and Biotechnology, 115, 1115–1126.

    Article  Google Scholar 

  45. Liao, W., Wen, Z., Hurley, S., Liu, Y., Liu, C., & Chen, S. (2005). Applied Biochemistry and Biotechnology, 124, 1017–1030.

    Article  Google Scholar 

  46. Öhgren, K., Bura, R., Lesnicki, G., Saddler, J., & Zacchi, G. (2007). Process Biochemistry, 42, 834–839.

    Article  Google Scholar 

  47. Kadam, K. L., Rydholm, E. C., & McMillan, J. D. (2004). Biotechnology Progress, 20, 698–705.

    Article  CAS  Google Scholar 

  48. Wu, Z., & Lee, Y. Y. (1997). Biotechnology Letters, 19, 977–979.

    Article  CAS  Google Scholar 

  49. Bobleter, O. (1994). Hydrothermal degradation of polymers derived from plants. Progress in Polymer Science, 19, 797–841.

    Article  CAS  Google Scholar 

  50. Young, R. A., & Rowell, R. M. (1986). Cellulose: Structure, modification and hydrolysis (1st ed.). New York: Wiley. 281.

    Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial support provided by NREL (subcontract: LCO-9-99343-01), and Alabama Center for Paper and Renewable Resources Engineering. We also wish to thank Richard Elander and Nick Nagle of NREL for providing the pretreated corn stover, Genencor-Danisco (Paulo Alto, CA) for the enzymes used in this study; and our colleagues Suchithra Gopakumar and Li Kang for their help with GC/MS analysis and lignin extraction experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Y. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kothari, U.D., Lee, Y.Y. Inhibition Effects of Dilute-Acid Prehydrolysate of Corn Stover on Enzymatic Hydrolysis of Solka Floc. Appl Biochem Biotechnol 165, 1391–1405 (2011). https://doi.org/10.1007/s12010-011-9355-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9355-3

Keywords

Navigation