Skip to main content
Log in

Structure and Pyrolysis Characteristics of Lignin Derived from Wood Powder Hydrolysis Residues

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Physicochemical characteristics of wood powder acid hydrolysis residue (WAHR) were studied firstly in this study, and WAHL (lignin derived from WAHR) was separated successfully from WAHR based on an improved isolating method. The content of functional group such as phenolic hydroxyl group of guaiacyl, syringyl, and hydroxyl–phenyl units in WAHL were identified by 31P-NMR and DFRC (derivatization followed by reductive cleavage) method. Thermal degradation experiments were carried out on a thermogravimetric (TG) analyzer to show pyrolysis characteristics of WAHL. The compositions of pyrolysis products of WAHL were also studied throughout a pyrolysis–gas chromatography–mass spectrometry (Py–GC–MS) analyzer. It was shown that the pyrolysis of WAHL took place in a wide temperature range and there were two obvious peaks in the differential thermogravimetric diagram. Results of Py–GC–MS analysis indicated that pyrolysis products were mainly formed through cleavage of the β-O-4 connection and multiple pyrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Han, J., & Kim, H. (2008). Renew Sust Energ Rev, 12, 397–416.

    Article  CAS  Google Scholar 

  2. Rogers, J. G., & Brammer, J. G. (2009). Biomass Bioenerg, 33, 1367–1375.

    Article  Google Scholar 

  3. Jin, X., Michael, K. H. L., Leung, Y. C. D., & Ni, M. (2009). Renew Sust Energ Rev, 13, 1301–1313.

    Article  Google Scholar 

  4. Li, C., & Suzuki, K. (2009). Renew Sust Energ Rev, 13, 594–604.

    Article  CAS  Google Scholar 

  5. Demirbas, M. F., Balat, M., & Balat, H. (2009). Energ Convers Manage, 50, 1746–1760.

    Article  CAS  Google Scholar 

  6. Yuen, F. K., & Hameed, B. H. (2009). Adv Colloid Interfac, 149, 19–27.

    Article  CAS  Google Scholar 

  7. Ioannidou, O., & Zabaniotou, A. (2007). Renew Sust Energ Rev, 11, 1966–2005.

    Article  CAS  Google Scholar 

  8. Heinimö, J., & Junginger, M. (2009). Biomass Bioenerg, 33, 1310–1320.

    Article  Google Scholar 

  9. Hosoya, T., Kawamoto, H., & Saka, S. (2009). J Anal Appl Pyrolysis, 85, 237–246.

    Article  CAS  Google Scholar 

  10. Wang, S., Wang, K., Liu, Q., Gu, Y., Luo, Z., & Cen, K. (2009). Biotechnology Advances, 27, 562–567.

    Article  CAS  Google Scholar 

  11. Hosoya, T., Kawamoto, H., & Saka, S. (2009). J Anal Appl Pyrolysis, 84, 79–83.

    Article  CAS  Google Scholar 

  12. Adler, E. (1977). Wood Sci. Technol., 11, 169–218.

    CAS  Google Scholar 

  13. Yang, S. (2001). Lignocellulosic Fiber Chemistry [M]. Beijing: China Light Industry Press.

    Google Scholar 

  14. Argyropoulos, D. S., & Menachem, S. B. (1997). Biotechnology in the Pulp and Paper Industry [M] (pp. 128–151). Springer Berlin: Heidelberg.

    Google Scholar 

  15. Björkman, A. (1956). Sevensk Paperstidn, 59, 477–485.

    Google Scholar 

  16. Brownell, H. H. (1965). Tappi, 48, 513–518.

    CAS  Google Scholar 

  17. Gellerstedt, G., Pranda, J., & Lindfors, E. L. (1994). J Wood Chem Tech, 1994, 14467.

    Google Scholar 

  18. Wu, S., & Argyropoulos, D. S. (2003). J Pulp Pap Sci, 29, 235–240.

    CAS  Google Scholar 

  19. Wang S. (2007) Study on the chemical structures and thermochemical properties of three straw lignins [D]. College of Light Industry and Food Sciences.

  20. Xu, G., Ji, W., & Wan, Y. (2007). Prog Chem, 19, 1164–1176.

    CAS  Google Scholar 

  21. Qi W., Zhang S., Yan Y. Method and apparatus for preparing monosaccharide with diluent acid continuous catalyzing biomass [P]. Publication Number: CN1927874A.

  22. Wu, S., & Li, M. (2006). Chem Ind Forest Prod, 26, 104–108.

    Google Scholar 

  23. Argyropoulos, D. S. (1994). Journal of Wood Chemistry and Technology, 14, 45–63.

    Article  CAS  Google Scholar 

  24. Yuan, C., Yan, Y., & Ren, Z. (2005). Journal of East China University of Science and Techno logy (N atural Science Edition), 31, 96–99.

    CAS  Google Scholar 

  25. Yue, J., & Ying, H. (2006). T Chinese Soc Agr Eng, 22, 125–128.

    Google Scholar 

  26. Amen-chen, C., Pakdel, H., & Roy, C. (2001). Bioresource Technol, 79, 277–299.

    Article  CAS  Google Scholar 

  27. Nakamura, T., Kawamoto, H., & Saka, S. (2008). J Anal Appl Pyrolysis, 81, 173–182.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (50876109), the National High Technology Research and Development Program (863 Program) of China (2009AA05Z434), and the National Basic Research Program (973 Program) of China (2007CB210201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Yin, X., Wu, C. et al. Structure and Pyrolysis Characteristics of Lignin Derived from Wood Powder Hydrolysis Residues. Appl Biochem Biotechnol 168, 37–46 (2012). https://doi.org/10.1007/s12010-011-9284-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9284-1

Keywords

Navigation