Skip to main content
Log in

The Comparison of Lutein Production by Scenesdesmus sp. in the Autotrophic and the Mixotrophic Cultivation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The results of this study indicate that an increase in CO2 percentage to 30% can enhance Scenedesmus sp. growth in autotrophic cultivation to a maximum of 0.85 g/l as compared with 0.6 g/l obtained in the batch with air (after 6 days of cultivation). However, while the CO2 was higher than 30%, it showed a negative impact on cell growth. A mixotrophic cultivation with 3 g/l of glycerol can achieve 0.38 g l−1 day−1 of the maximum biomass productivity compared with that of 0.21 g l−1 day−1 in autotrophic cultivation. Nevertheless, the lutein content of the mixotrophic cultivation was 0.08–0.1% lower than 0.2–0.25% obtained in autotrophic cultivation, which led to a lower lutein productivity of 0.36 mg l−1 day−1 in the mixotrophic batch compared with 0.44 mg l−1 day−1 obtained in the autotrophic batch. The limitation of cell growth in the mixotrophic cultivation would be the contributing factor regarding the lower lutein productivity. The mixotrophic cultivation of repeated batch to remove potential inhibitive metabolic products from glycerol catabolism does not show an obvious improvement on biomass. Conclusively, mixotrophic cultivation achieves higher biomass productivity with lower lutein content than that of autotrophic cultivation, which leads to lower lutein productivity. Therefore, the autotrophic cultivation is preferred in the lutein production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fernández-Sevilla, J. M., Acién Fernández, F. G., & Molina Grima, E. (2010). Applied Microbiology and Biotechnology, 86, 27–40.

    Article  Google Scholar 

  2. Ziegler, R., Colavito, E., Hartge, P., McAdams, M., Schoenberg, J., Mason, T., et al. (1996). Journal of the National Cancer Institute, 88, 612–615.

    Article  CAS  Google Scholar 

  3. Piccaglia, R., Marotti, M., & Grandi, S. (1998). Industrial Crops and Products, 8, 45–51.

    Article  CAS  Google Scholar 

  4. Del Campo, J. A., Rodríguez, H., Moreno, J., Vargas, M. A., Rivas, J., & Guerrero, M. G. (2001). Journal of Biotechnology, 85, 289–295.

    Article  Google Scholar 

  5. Del Campo, J. A., Rodríguez, H., Moreno, J., Vargas, M. A., Rivas, J., & Guerrero, M. G. (2000). Journal of Biotechnology, 76, 51–59.

    Article  Google Scholar 

  6. Shi, X. M., Zhang, X. W., & Chen, F. (2000). Enzyme and Microbial Technology, 27, 312–318.

    Article  CAS  Google Scholar 

  7. Liang, Y., Sarkany, N., & Cui, Y. (2009). Biotechnology Letters, 31, 1043–1049.

    Article  CAS  Google Scholar 

  8. Chojnacka, K., & Noworyta, A. (2004). Enzyme and Microbial Technology, 34, 461–465.

    Article  CAS  Google Scholar 

  9. Cerón García, M. C., Sánchez Mirón, A., Fernández Sevilla, J. M., Molina Grima, E., & García Camacho, F. (2000). Journal of Applied Phycology, 12, 239–248.

    Article  Google Scholar 

  10. Simons, K. (2008). Focus on catalyst 1–2.

  11. Shi, X., Chen, F., Yuan, J., & Chen, H. (1997). Journal of Applied Phycology, 9, 445–450.

    Article  CAS  Google Scholar 

  12. Zhu, M. M., Lawman, P. D., & Cameron, D. C. (2002). Biotechnology Progress, 18, 694–699.

    Article  CAS  Google Scholar 

  13. Tukaj, Z., Matusiak-Mikulin, K., Lewandowska, J., & Szurkowski, J. (2003). Plant Physiology and Biochemistry, 41, 337–344.

    Article  CAS  Google Scholar 

  14. Lee, Y. K., & Tay, H. S. (1991). Journal of Applied Phycology, 3, 95–101.

    Article  Google Scholar 

  15. Sánchez, J. F., Fernández, J. M., Acién, F. G., Rueda, A., Pérez-Parra, J., & Molina, E. (2008). Process Biochemistry, 43, 398–405.

    Google Scholar 

  16. Benkortbi, O., Hanini, S., & Bentahar, F. (2007). Biochemical Engineering Journal, 36, 14–18.

    Article  CAS  Google Scholar 

  17. Luedeking, R., & Piret, E. L. (1959). Journal of Biochemical and Microbiological Technology and Engineering, 1, 393–412.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Science Council of the R.O.C. for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wei Yen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yen, HW., Sun, CH. & Ma, TW. The Comparison of Lutein Production by Scenesdesmus sp. in the Autotrophic and the Mixotrophic Cultivation. Appl Biochem Biotechnol 164, 353–361 (2011). https://doi.org/10.1007/s12010-010-9139-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9139-1

Keywords

Navigation