Skip to main content
Log in

Implementation of Random Bacterial Genomic DNA Microarray Chip (RBGDMC) for Screening of Dominant Bacteria in Complex Cultures

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The random bacterial genomic DNA microarray chip (RBGDMC), which was fabricated using random genomic DNA fragments obtained from the fragmentation of bacterial genome by using four different pairs of restriction enzymes, was found to discriminate bacterial species in the same genus and resulted in the determination of dominant bacteria in enriched cultures. The identification of a dominant bacterial species was successfully conducted in the co-culture of three different bacteria using the RBGDMC. In addition, the analysis of the chip data could confirm if any of the selected bacteria is the most abundant or if some bacteria were enriched and became the dominant species within the consortium after the samples were prepared from the repeated cultures of real sludge in a complex medium. This study shows the successful implementation of the RBGDMC for the identification and monitoring of dominant bacteria in complex environmental bacterial communities simply without any PCR amplification of the target nucleic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dearman, B., Marschner, P., & Bentham, R. H. (2006). Methane production and microbial community structure in single-stage batch and sequential batch systems anaerobically co-digesting food waste and biosolids. Applied Microbiology and Biotechnology, 69, 589–596.

    Article  CAS  Google Scholar 

  2. Parkes, R. J., & Taylor, J. (1985). Characterization of microbial populations in polluted marine sediments. Journal of Applied Microbiology, 59, 155S–173S.

    Article  Google Scholar 

  3. Wu, L. Y., Thompson, D. K., Li, G. S., Hurt, R. A., Tiedje, J. M., & Zhou, J. Z. (2001). Development and evaluation of functional gene arrays for detection of selected genes in the environment. Applied and Environmental Microbiology, 67, 5780–5790.

    Article  CAS  Google Scholar 

  4. Kampfer, P. (1997). Detection and cultivation of filamentous bacteria from activated sludge. FEMS Microbiology Ecology, 23, 169–181.

    Article  CAS  Google Scholar 

  5. Langendijk, P. S., Schut, F., Jansen, G. J., Raangs, G. C., Kamphuis, G. R., Wilkinson, M. H. F., et al. (1995). Quantitative fluorescence in-situ hybridization of Bifidobacterium spp. with genus-specific 16S ribosomal-RNA-targeted probes and its application in fecal samples. Applied and Environmental Microbiology, 61, 3069–3075.

    CAS  Google Scholar 

  6. Ravenschlag, K., Sahm, K., & Amann, R. (2001). Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard). Applied and Environmental Microbiology, 67, 387–395.

    Article  CAS  Google Scholar 

  7. Smit, E., Leeflang, P., Gommans, S., van den Broek, J., van Mil, S., & Wernars, K. (2001). Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Applied and Environmental Microbiology, 67, 2284–2291.

    Article  CAS  Google Scholar 

  8. Dahllof, I. (2002). Molecular community analysis of microbial diversity. Current Opinion in Biotechnology, 13, 213–217.

    Article  CAS  Google Scholar 

  9. Amann, R., Fuchs, B. M., & Behrens, S. (2001). The identification of microorganisms by fluorescence in situ hybridisation. Current Opinion in Biotechnology, 12, 231–236.

    Article  CAS  Google Scholar 

  10. Muyzer, G. (1999). DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology, 2, 317–322.

    Article  CAS  Google Scholar 

  11. Moeseneder, M. M., Arrieta, J. M., Muyzer, G., Winter, C., & Herndl, G. J. (1999). Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 65, 3518–3525.

    CAS  Google Scholar 

  12. Acinas, S. G., RodriguezValera, F., & PedrosAlio, C. (1997). Spatial and temporal variation in marine bacterioplankton diversity as shown by RFLP fingerprinting of PCR amplified 16S rDNA. FEMS Microbiology Ecology, 24, 27–40.

    Article  CAS  Google Scholar 

  13. Dionisi, H. M., Harms, G., Layton, A. C., Gregory, I. R., Parker, J., Hawkins, S. A., et al. (2003). Power analysis for real-time PCR quantification of genes in activated sludge and analysis of the variability introduced by DNA extraction. Applied and Environmental Microbiology, 69, 6597–6604.

    Article  CAS  Google Scholar 

  14. Barlaan, E. A., Sugimori, M., Furukawa, S., & Takeuchi, K. (2005). Electronic microarray analysis of 16S rDNA amplicons for bacterial detection. Journal of Biotechnology, 115, 11–21.

    Article  CAS  Google Scholar 

  15. Kelly, J. J., Siripong, S., McCormack, J., Janus, L. R., Urakawa, H., El Fantroussi, S., et al. (2005). DNA microarray detection of nitrifying bacterial 16S rRNA in wastewater treatment plant samples. Water Research, 39, 3229–3238.

    Article  CAS  Google Scholar 

  16. Rhee, S. K., Liu, X. D., Wu, L. Y., Chong, S. C., Wan, X. F., & Zhou, J. Z. (2004). Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Applied and Environmental Microbiology, 70, 4303–4317.

    Article  CAS  Google Scholar 

  17. Epstein, J. R., Biran, I., & Walt, D. R. (2002). Fluorescence-based nucleic acid detection and microarrays. Analytica Chimica Acta, 469, 3–36.

    Article  CAS  Google Scholar 

  18. Sergeev, N., Distler, M., Courtney, S., Al-Khaldi, S. F., Volokhov, D., Chizhikov, V., et al. (2004). Multipathogen oligonucleotide microarray for environmental and biodefense applications. Biosensors & Bioelectronics, 20, 684–698.

    Article  CAS  Google Scholar 

  19. Cao, X., Wang, Y. F., Zhang, C. F., & Gao, W. J. (2006). Visual DNA microarrays for simultaneous detection of Ureaplasma urealyticum and Chlamydia trachomatis coupled with multiplex asymmetrical PCR. Biosensors & Bioelectronics, 22, 393–398.

    Article  CAS  Google Scholar 

  20. Xu, J., Miao, H. Z., Wu, H. F., Huang, W. S., Tang, R., Qiu, M. Y., et al. (2006). Screening genetically modified organisms using multiplex-PCR coupled with oligonucleotide microarray. Biosensors & Bioelectronics, 22, 71–77.

    Article  CAS  Google Scholar 

  21. Kim, H. J., Park, S. H., Lee, T. H., Nahm, B. H., Kim, Y. R., & Kim, H. Y. (2008). Microarray detection of food-borne pathogens using specific probes prepared by comparative genomics. Biosensors & Bioelectronics, 24, 238–246.

    Article  CAS  Google Scholar 

  22. Kim, B. C., Park, J. H., & Gu, M. B. (2004). Development of a DNA microarray chip for the identification of sludge bacteria using an unsequenced random genomic DNA hybridization method. Environmental Science & Technology, 38, 6767–6774.

    Article  CAS  Google Scholar 

  23. Kim, B. C., Park, J. H., & Gu, M. B. (2005). Multiple and simultaneous detection of specific bacteria in enriched bacterial communities using a DNA microarray chip with randomly generated genomic DNA probes. Analytical Chemistry, 77, 2311–2317.

    Article  CAS  Google Scholar 

  24. Cook, K. L., & Sayler, G. S. (2003). Environmental application of array technology: Promise, problems and practicalities. Current Opinion in Biotechnology, 14, 311–318.

    Article  CAS  Google Scholar 

  25. Gracey, A. Y., & Cossins, A. R. (2003). Application of microarray technology in environmental and comparative physiology. Annual Review of Physiology, 65, 231–259.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (code no. 20080401034020) from the BioGreen 21 Program, Rural Development Administration, Republic of Korea. The authors are grateful for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Bock Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, B.C., Park, J.H. & Gu, M.B. Implementation of Random Bacterial Genomic DNA Microarray Chip (RBGDMC) for Screening of Dominant Bacteria in Complex Cultures. Appl Biochem Biotechnol 162, 2284–2293 (2010). https://doi.org/10.1007/s12010-010-9002-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9002-4

Keywords

Navigation