Skip to main content
Log in

Increase of Docosahexaenoic Acid Production by Schizochytrium sp. Through Mutagenesis and Enzyme Assay

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study focused on improving docosahexaenoic acid (DHA) production by Schizochytrium sp. through N-methyl-N-nitro-N-nitrisiguanidine treatment coupled with ultraviolet radiation based on the metabolic pathway analysis. The activity of glucose-6-phosphate dehydrogenase of the mutant was higher than the parent strain, which indicated that the hexose monophosphate pathway of the mutant was strengthened, and more NADPH was thus produced. Also, the activities of malic enzyme and ATP–citrate lyase in the cell extract of the mutant were higher than the parent strain, which indicated that the screening method increased NADPH and acetyl–CoA supply in vivo effectively. Finally, in the batch culturing of the mutant, 34.84% higher lipid was accumulated with the cell dry weight at the same level compared with the parent strain. Moreover, the DHA percentage of the total fatty acids up to 56.22% was achieved using the mutant, which was 38.88% higher than the parent strain. When the cultures were maintained under appropriate conditions, the final DHA yield was 0.20 and 0.11 g/g dry biomass, for the mutant and parent, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Weete, J. D., Kim, H., Gandhi, S. R., et al. (1997). Lipids, 32, 839–845.

    Article  CAS  Google Scholar 

  2. Medina, A. R., Grima, E. M., Gonzalez, M. J. I., et al. (1998). Biotechnol Adv, 16, 517–580.

    Article  CAS  Google Scholar 

  3. Meireles, L. A., Guedes, A. C., & Malcata, F. X. (2003). J Agric Food Chem, 51, 2237–2241.

    Article  CAS  Google Scholar 

  4. Meireles, L. A., Guedes, A. C., & Malcata, F. X. (2003). Biotechnol Bioeng, 81, 50–55.

    Article  CAS  Google Scholar 

  5. Chi, Z. Y., Liu, Y., Frear, C., et al. (2009). Appl Microbiol Biotechnol, 81, 1141–1148.

    Article  CAS  Google Scholar 

  6. Gravius, B., Bezmalinovic, T., Hranueli, D., et al. (1993). Appl Environ Microbiol, 59, 2220–2228.

    CAS  Google Scholar 

  7. Alonso, D. L., Castillo, C. I. S., Grima, E. M., et al. (1996). J Phycol, 32, 339–345.

    Article  CAS  Google Scholar 

  8. Xiao, Q. (2003). Leukotrienes and Essential Fatty Acids, 68, 181–186.

    Article  Google Scholar 

  9. Metz, J. G., Roessler, P., Facciotti, D., et al. (2001). Sci, 293, 290–293.

    Article  CAS  Google Scholar 

  10. Wallis, J. G., & Watts, J. L. (2002). Trends Biochem Sci, 27, 467–473.

    Article  CAS  Google Scholar 

  11. Ratledge, C. (2002). Biochem Society Trans, 30, 1047–1050.

    Article  CAS  Google Scholar 

  12. Ren, L. J., Huang, H., Xiao, A. H., et al. (2009). Bioproc Biosyst Eng, 32, 837–843.

    Article  CAS  Google Scholar 

  13. Chance, B., & Park, J. H. (1967). J Biol Chem, 242, 5093–5105.

    CAS  Google Scholar 

  14. Beevers, H. (1952). Am Soc Plant Biol, 27, 725–735.

    CAS  Google Scholar 

  15. Lowry, O. H., Rosebrough, N. J., Farr, A. L., et al. (1951). J Biol Chem, 193, 265–275.

    CAS  Google Scholar 

  16. Hsu, R. Y., & Lardy, H. A. (1969). Methods Enzymol, 13, 230–235.

    Article  CAS  Google Scholar 

  17. Takeda, Y., Suzuki, F., & Inoue, H. (1969). Methods Enzymol, 13, 153–160.

    Article  CAS  Google Scholar 

  18. Langdon, R. C. (1966). Methods Enzymol, 9, 126–131.

    Article  CAS  Google Scholar 

  19. de Swaaf, M. E., de Rijk, T. C., et al. (1999). J Biotechnol, 70, 185–192.

    Article  Google Scholar 

  20. de Swaaf, M. E., Sijtsma, L., & Pronk, J. T. (2003). Biotechnol Bioeng, 81, 666–672.

    Article  CAS  Google Scholar 

  21. de Swaaf, M. E., Pronk, J. T., & Sijtsma, L. (2003). Appl Microbiol Biotechnol, 61, 40–43.

    Google Scholar 

  22. Belfiore, F., Borzi, V., Vecchio, L. L., et al. (1975). Clin Chem, 21, 880–883.

    CAS  Google Scholar 

  23. Ratledge, C. (2004). Biochimie, 86, 807–815.

    Article  CAS  Google Scholar 

  24. Zink, M. W. (1972). Can J Microbiol, 18, 611–617.

    Article  CAS  Google Scholar 

  25. Mccullough, W., & Roberts, C. F. (1974). FEBS Lett, 41, 238–242.

    Article  CAS  Google Scholar 

  26. Evans, C. T., & Ratledge, C. (1985). Can J Microbiol, 31, 1000–1005.

    Article  CAS  Google Scholar 

  27. Zink, M. W., & Katz, J. S. (1973). Can J Microbiol, 19, 1187–1196.

    Article  CAS  Google Scholar 

  28. Wynn, J. P., & Ratledge, C. (1997). Microbiol, 143, 253–257.

    Article  CAS  Google Scholar 

  29. Ratledge, C., Bowater, M. D. V., & Taylor, P. N. (1997). Lipids, 32, 7–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (no. 20606018), the Key Program of National Natural Science Foundation of China (no. 20936002), the National Basic Research Program of China (no. 2007CB707805), the Scientific Research Project for Post-graduate in Jiangsu Province of China (no. CX07s_032z), and the Fifth of Six Projects Sponsoring Talent Summits of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lian, M., Huang, H., Ren, L. et al. Increase of Docosahexaenoic Acid Production by Schizochytrium sp. Through Mutagenesis and Enzyme Assay. Appl Biochem Biotechnol 162, 935–941 (2010). https://doi.org/10.1007/s12010-009-8865-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8865-8

Keywords

Navigation