Skip to main content
Log in

Biochemical Properties of α-Amylase from Peel of Citrus sinensis cv. Abosora

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

α-Amylase activity was screened in the peel, as waste fruit, of 13 species and cultivars of Egyptian citrus. The species Citrus sinensis cv. Abosora had the highest activity. α-Amylase AI from Abosora peel was purified to homogeneity using anion and cation-exchange, and gel filtration chromatographies. Molecular weight of α-amylase AI was found to be 42 kDa. The hydrolysis properties of α-amylase AI toward different substrates indicated that corn starch is the best substrate. The α-amylase had the highest activity toward glycogen compared with amylopectin and dextrin. Potato starch had low affinity toward α-amylase AI but it did not hydrolyze β-cyclodextrin and dextran. Apparent Km for α-amylase AI was 5 mg (0.5%) starch/ml. α-Amylase AI showed optimum activity at pH 5.6 and 40 °C. The enzyme was thermally stable up to 40 °C and inactivated at 70 °C. The effect of mono and divalent metal ions were tested for the α-amylase AI. Ba2+ was found to have activating effect, where as Li+ had negligible effect on activity. The other metals caused inhibition effect. Activity of the α-amylase AI was increased one and half in the presence of 4 mM Ca2+ and was found to be partially inactivated at 10 mM Ca2+. The reduction of starch viscosity indicated that the enzyme is endoamylase. The results suggested that, in addition to citrus peel is a rich source of pectins and flavanoids, α-amylase AI from orange peel could be involved in the development and ripening of citrus fruit and may be used for juice processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Janeck, S., & Belaz, S. (1992). FEBS Letters, 304, 1–4. doi:10.1016/0014-5793(92)80575-2.

    Article  Google Scholar 

  2. Muralikrishna, G., & Nirmala, M. (2005). Carbohydrate Polymers, 60, 163–173. doi:10.1016/j.carbpol.2004.12.002.

    Article  CAS  Google Scholar 

  3. Marc, J. E. C., Maarel, V. D., Veen, B. V. D., Uitdehaag, J. C. M., Leemhuis, H., & Dijkhuizen, L. (2002). Journal of Biotechnology, 94, 137–155. doi:10.1016/S0168-1656(01)00407-2.

    Article  Google Scholar 

  4. Jacobsen, J. V., Gubler, F., & Chandler, P. M. (1995). In P. J. Davies (Ed.), Plant hormones: Physiology, biochemistry, and molecular biology (pp. 246–271). Dordrecht: Kluwer.

    Google Scholar 

  5. Larrauri, J. A., Ruperez, P., & Saura-calixto, F. (1999). Trends in Food Science and Technology, 29, 729–733.

    Google Scholar 

  6. Rodriguez de Sotillo, D., Hadley, M., & Holm, E. T. (1994). Journal of Food Science, 59, 1031–1033. doi:10.1111/j.1365-2621.1994.tb08182.x.

    Article  CAS  Google Scholar 

  7. Wolfe, K., Xianzhong, W. U., & Liu, R. H. (2003). Journal of Agricultural and Food Chemistry, 51, 609–614. doi:10.1021/jf020782a.

    Article  CAS  Google Scholar 

  8. Anagnostopoulou, M. A., Kefalas, P., Papageorgiou, V. P., Assimopoulou, A. N., & Boskou, D. (2006). Food Chemistry, 94, 19–25. doi:10.1016/j.foodchem.2004.09.047.

    Article  CAS  Google Scholar 

  9. Coll, M. D., Coll, L., Laencina, J., & Tomas-Barberan, F. A. (1998). Zeitschriff Fur Lebensmittel-Untersuchung A, 206, 404–407. doi:10.1007/s002170050282.

    Article  CAS  Google Scholar 

  10. Li, S., Yu, H., & Ho, C. T. (2005). Biomedical Chromatography, 20, 133–138. doi:10.1002/bmc.540.

    Article  CAS  Google Scholar 

  11. Mandalari, G., Bennett, R. N., Bisignano, G., Saija, A., Dugo, G., Lo Curto, R. B., et al. (2006). Journal of Agricultural and Food Chemistry, 54, 197–203. doi:10.1021/jf051847n.

    Article  CAS  Google Scholar 

  12. Mohamed, S. A., El-Badry, M. O., Drees, E. A., & Fahmy, A. S. (2008). Applied Biochemistry and Biotechnology, 150, 127–137. doi:10.1007/s12010-008-8142-2.

    Article  CAS  Google Scholar 

  13. Saby John, K., Bhat, S. G., & Prasada Rao, U. J. S. (2002). Journal of Food Biochemistry, 26, 403–414. doi:10.1111/j.1745-4514.2002.tb00762.x.

    Article  Google Scholar 

  14. Miller, G. L. (1959). Analytical Chemistry, 31, 426–429. doi:10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  15. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254. doi:10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  16. Laemmli, U. K. (1970). Nature, 227, 680–885. doi:10.1038/227680a0.

    Article  CAS  Google Scholar 

  17. Shaw, J. F., & Ou-Lee, T. M. (1984). Botonical Bulletin of Academia Sinica, 25, 197–204.

    Google Scholar 

  18. Mohamed, S. A. (2004). Bull NRC, Egypt, 29, 379–398.

    CAS  Google Scholar 

  19. Peroni, F. H., Koike, C., Louro, R. P., Purgatto, E., do Nascimento, J. R., Lajolo, F. M., et al. (2008). Mango starch degradation. II. The binding of alpha-amylase and beta-amylase to the starch granule. Journal of Agricultural and Food Chemistry, 56, 7416–7421. doi:10.1021/jf800469w.

    Article  Google Scholar 

  20. Noman, A. S. M., Hoque, M. A., Sen, P. K., & Karim, M. R. (2006). Food Chemistry, 99, 444–449. doi:10.1016/j.foodchem.2005.07.056.

    Article  CAS  Google Scholar 

  21. Beers, E., & Duke, S. (1990). Plant Physiology, 92, 1154. doi:10.1104/pp. 92.4.1154.

    Article  CAS  Google Scholar 

  22. Lin, L.-L., Chyan, C.-C., & Hsu, W.-H. (1998). Biotechnology and Applied Biochemistry, 28, 61–68.

    CAS  Google Scholar 

  23. Nirmala, M., & Muralikrishna, G. (2003). Phytochemistry, 62, 21–30. doi:10.1016/S0031-9422(02)00443-0.

    Article  CAS  Google Scholar 

  24. Fahmy, A. S., Mohamed, M. A., Mohamed, T. M., & Mohamed, S. A. (2000). Bull NRC, Egypt, 25, 61–80.

    CAS  Google Scholar 

  25. Nirmala, M., & Muralikrishna, G. (2003). Carbohydrate Polymers, 54, 43–50. doi:10.1016/S0144-8617(03)00151-6.

    Article  CAS  Google Scholar 

  26. Abe, R., Chib, A. Y., & Nakajima, T. (2002). Biologia, 57, 197–202.

    CAS  Google Scholar 

  27. Savchenko, A., Vielle, C., Kang, S., & Zeikus, G. (2002). Biochemistry, 41, 6193–6201. doi:10.1021/bi012106s.

    Article  CAS  Google Scholar 

  28. Sprinz, C. (1999). In H. D. Belitz & W. Gross (Eds.), Food chemistry (pp. 92–151). Berlin, Heidelberg, New York: Springer Verlag.

    Google Scholar 

  29. Bush, D. S., Sticher, L., Hwystee, R. V., Wegner, D., & Jones, R. L. (1989). The Journal of Biological Chemistry, 264, 19392–19398.

    CAS  Google Scholar 

  30. Vihinen, M., & Mantsala, P. (1989). Critical Reviews in Biochemistry and Molecular Biology, 24, 329–348. doi:10.3109/10409238909082556.

    Article  CAS  Google Scholar 

  31. Thoma, J. A., Spalin, J. F., & Dygert, S. (1971). In P. Boyer (Ed.), Plant and animal amylases, Vol. 5 (pp. 115–189). The enzymes. New York: Academic press.

  32. Hill, R. D., & McGregor, A. W. (1988). In Y. Pomeranz (Ed.), Advances in cereal science and technology, Vol. 9 (pp. 217). St Paul, USA, AACC.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleh Ahmed Mohamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, S.A., Drees, E.A., El-Badry, M.O. et al. Biochemical Properties of α-Amylase from Peel of Citrus sinensis cv. Abosora. Appl Biochem Biotechnol 160, 2054–2065 (2010). https://doi.org/10.1007/s12010-009-8864-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8864-9

Keywords

Navigation