Skip to main content
Log in

Isolation, Purification, and Properties of a Novel Small Heat Shock Protein from the Hyperthermophile Sulfolobus solfataricus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The isolation, purification, and properties of a putative small heat shock protein (sHsp), named SsHSP14.1, from the hyperthermophilic archaeon Sulfolobus solfataricus have been investigated. The sHsp was successfully expressed and purified from Escherichia coli. In vivo chaperone function of SsHSP14.1 for preventing aggregation of proteins during heating was investigated. It was found that recombinant SsHSP14.1 with a molecular mass of 17.8 kDa prevented E. coli proteins from aggregating in vivo at 50 °C. This result suggested that SsHSP14.1 confers a survival advantage on mesophilic bacteria by preventing protein aggregation at supraoptimal temperatures. In vitro, the purified SsHSP14.1 protein was able to prevent Candida antarctica lipase B from aggregation for up to 60 min at 80 °C. Moreover, the SsHSP14.1 enhanced thermostability of bromelain extending its half-life at 55 °C by 67%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Narberhaus, F. (2002). α-Crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiology and Molecular Biology Reviews, 66, 64–93. doi:10.1128/MMBR.66.1.64-93.2002.

    Article  CAS  Google Scholar 

  2. Horwitz, J. (1992). α-Crystallin can function as a molecular chaperone. Proceedings of the National Academy of Sciences, 89, 10449–10453.

    Article  CAS  Google Scholar 

  3. Rosalind, K., Kyeong, K. K., & Hisao, Y. (1998). Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proceedings of the National Academy of Sciences, 95, 9129–9133.

    Article  Google Scholar 

  4. Alvaro, S., Isabel, A., & Carmen, C. (1999). Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiology, 120, 521–528. doi:10.1104/pp.120.2.521.

    Article  Google Scholar 

  5. Caspers, G., Leunissen, J., & De, J. (1995). The expanding small heat-shock protein family, and structure predictions of the conserved “α-crystallin domain”. Journal of Molecular Evolution, 40, 238–248. doi:10.1007/BF00163229.

    Article  CAS  Google Scholar 

  6. Sun, Y., & Macrae, T. (2005). Small heat shock proteins: molecular structure and chaperone function. Cellular and Molecular Life Sciences, 62, 2460–2476. doi:10.1007/s00018-005-5190-4.

    Article  CAS  Google Scholar 

  7. Haslbeck, M., Franzmann, T., & Weinfurtner, D. (2005). Some like it hot: the structure and function of small heat-shock proteins. Nature Structural & Molecular Biology, 12, 842–846. doi:10.1038/nsmb993 Perspective.

    Article  CAS  Google Scholar 

  8. Nakamoto, H., & Vigh, L. (2007). The small heat shock proteins and their clients. Cellular and Molecular Life Sciences, 64, 294–306. doi:10.1007/s00018-006-6321-2.

    Article  CAS  Google Scholar 

  9. Mee-Jung, H., Hongseok, Y., & Sang, Y. L. (2008). Microbial small heat shock proteins and their use in biotechnology. Biotechnology Advances, 26, 591–609. doi:10.1016/j.biotechadv.2008.08.004.

    Article  Google Scholar 

  10. Qunxin, S., Ramak, S., & Fabrice, C. (2001). The complete genome of the crenarchaeon sulfolobus solfataricus P2. Proceedings of the National Academy of Sciences, 98, 7835–7840. doi:10.1073/pnas.141222098.

    Article  Google Scholar 

  11. Sambrook, J., Fritsch, E. F., & Maniatis, T. (2002). Molecular cloning: A laboratory manual (3rd ed.). Peking: Science press.

    Google Scholar 

  12. Takashi, M., & Hans, N. (1960). Fractionation and specificity studies on stem bromelain. Journal of Biological Chemistry, 235, 99–107.

    Google Scholar 

  13. Muchowski, P. J., & Clark, J. I. (1998). ATP-enhanced molecular chaperone functions of the small heat shock protein human αB-crystallin. Proceedings of the National Academy of Science, 95, 1004–1009.

    Article  CAS  Google Scholar 

  14. Satoru, T. (2006). Analytical assays of human HSP27 and thermal-stress survival of Escherichia coli cells that overexpress it. Biochemical and Biophysical Research Communication, 341, 1252–1256. doi:10.1016/j.bbrc.2006.01.090.

    Article  Google Scholar 

  15. Nakamoto, H., Suzuki, N., & Roy, S. K. (2002). Constitutive expression of a small heat-shock protein confers cellular thermotolerance and thermal protection to the photosynthetic apparatus in cyanobacteria. FEBS Letters, 483, 169–174. doi:10.1016/S0014-5793(00)02097-4.

    Article  Google Scholar 

  16. Ivano, C., Davide, R., & Richard, R. (1998). A novel aminopeptidase associated with the 60 kDa chaperonin in the thermophilic archaeon sulfolobus solfataricus. Molecular Microbiology, 29, 775–785. doi:10.1046/j.1365-2958.1998.00971.

    Article  Google Scholar 

  17. Annamaria, G., Laura, C., & Mose, R. (1995). Prevention of in vitro protein thermal aggregation by the sulfolobus solfataricus chaperonin. Journal of Biological Chemistry, 270, 28126–28132. doi:10.1074/jbc.270.47.28126.

    Article  Google Scholar 

  18. Annamaria, G., Laura, C., & Simonetta, B. (1994). The chaperonin from the archaeon sulfolobus sofataricus promotes correct refolding and prevents thermal denaturation in vitro. Protein Science, 3, 1436–1443. doi:10.1002/pro.5560030910.

    Article  Google Scholar 

  19. Kyeong, K. K., Rosalind, K., & Sung-Hou, K. (1998). Crystal structure of a small heat shock protein. Nature, 394, 595–599. doi:10.1038/29106.

    Article  Google Scholar 

  20. Zhen, Y., Shinesuke, F., & Katsunori, K. (1997). In vitro stabilization and in vivo solubilization of foreign proteins by the subunit of a chaperonin from the hyperthermophilic archaeon pyrococcus sp. Strain KOD1. Applied and Environment Microbiology, 63, 785–789.

    Google Scholar 

  21. Ehrnsperger, M., Graber, S., & Gaestel, M. (1997). Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. The Embo Journal, 16, 221–229. doi:10.1093/emboj/16.2.221 Article.

    Article  CAS  Google Scholar 

  22. Laskowska, E., Kuczynska-Wisnik, D., & Taylor, A. (1996). Degradation by proteases Lon, Clp and HtrA, of Escherichia coli proteins aggregated in vivo by heat shock, HtrA protease action in vivo and in vitro. Molecular Microbiology, 22, 555–571. doi:10.1046/j.1365-2958.1996.1231493.

    Article  CAS  Google Scholar 

  23. Zolkiewski, M. (1999). ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. Journal of Biological Chemistry, 274, 28083–28086. doi:10.1074/jbc.274.40.28083.

    Article  CAS  Google Scholar 

  24. Philip, A. C. (1996). Chaperone-assisted protein expression. Structure, 4, 239–242. doi:10.1016/S0969-2126(96)00028-7.

    Article  Google Scholar 

  25. Chin-Kai, C., Yu-Show, S., & Chiu-Tin, F. (2009). A dual-functional E. coli vector for expressing recombinant protein with high solubility and antigen presentation ability. Protein Expression and Purification, 51-56. doi:10.1016/j.pep.2008.12.011.

  26. Pongpan, L., Dennis, L. M., & Frank, T. R. (2001). Regulation and mechanism of action of the small heat shock protein from the hyperthermophilic archaeon Pyrococcus furiosus. The Journal of Bacteriology, 183, 5198–5202. doi:10.1128/JB.183.17.5198-5202.2001.

    Article  Google Scholar 

  27. Trent, J. D., Nimmesgern, E., & Wall, J. S. (1991). A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein-complex polypeptide-1. Nature, 354, 490–493. doi:10.1038/354490a0.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was made possible with funding provided by National Natural Science Foundation of China (20706021) and the Research Fund for the Doctoral Program of Higher Education (20070561073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yang.

Additional information

Authors Yonghua Wang and Xun Xu contributed to the work equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Xu, X., Wen, Z. et al. Isolation, Purification, and Properties of a Novel Small Heat Shock Protein from the Hyperthermophile Sulfolobus solfataricus . Appl Biochem Biotechnol 162, 476–485 (2010). https://doi.org/10.1007/s12010-009-8809-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8809-3

Keywords

Navigation