Skip to main content
Log in

Generation of a Recombinant Full-Length Human Antibody Binding to Botulinum Neurotoxin A

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In order to develop a recombinant full-length human anti-botulinum neurotoxin A (BoNT/A) antibody, human peripheral blood mononuclear cells (PBMC) were collected from three healthy volunteers and induced for BoNT/A-specific immune response by in vitro immunization. The genes encoding human Fd fragment, consisting of antibody heavy chain variable region and constant region 1 with the genes encoding antibody light chain, were cloned from the immunized PBMC. Afterwards, one combinatory human antigen-binding fragment (Fab) library was constructed using a lambda phage vector system. The size of the constructed library was approximately 105 Escherichia coli transformants. After screening the library by BoNT/A antigen using a plaque lifting with immunostaining approach, 55 clones were identified as positive. The Fab gene of the most reactive clone exhibiting particularly strong BoNT/A binding signal was further subcloned into a full-length human IgG1 antibody gene template in an adenoviral expression vector, in which the heavy and light chains were linked by a foot-and-mouth-disease virus-derived 2A self-cleavage peptide under a single promoter. After the full-length human IgG1 was expressed in mammalian cells and purified with protein L column, sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the heavy and light chains of the antibody were cleaved completely. The affinity expressed as the dissociation constant (K d) for the recombinant human antibody to bind to BoNT/A was determined by indirect enzyme-linked immunosorbent assay and results confirmed that the recombinant full-length human antibody retained BoNT/A-binding specificity with K d value of 10−7 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hatheway, C. L. (1990). Toxigenic clostridia. Clinical Microbiology Reviews, 3, 66–98.

    CAS  Google Scholar 

  2. Valtorta, F., & Arslan, G. (1993). The pharmacology of botulinum toxin. Pharmacological Research, 27, 33–44. doi:10.1006/phrs.1993.1003.

    Article  CAS  Google Scholar 

  3. Fujii, N., Kimura, K., Yokosawa, N., Tsuzuki, K., & Oguma, K. (1992). A zinc-protease specific domain in botulinum and tetanus neurotoxins. Toxicon, 30, 1486–1488. doi:10.1016/0041-0101(92)90525-A.

    Article  CAS  Google Scholar 

  4. Sugiyama, H. (1980). Clostridium botulinum neurotoxin. Microbiological Reviews, 44, 419–448.

    CAS  Google Scholar 

  5. Hayashi, T., McMahon, H., Yamasaki, S., Binz, T., Hata, Y., Sudhof, T. C., et al. (1994). Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. The EMBO Journal, 13, 5051–5061.

    CAS  Google Scholar 

  6. Arnon, S. S., Schechter, R., Inglesby, T. V., Henderson, D. A., Bartlett, J. G., Ascher, M. S., et al. (2001). Botulinum toxin as a biological weapon: medical and public health management. Journal of the American Medical Association, 285, 1059–1070. doi:10.1001/jama.285.8.1059.

    Article  CAS  Google Scholar 

  7. Casadevall, A. (2002). Passive antibody administration (immediate immunity) as a specific defense against biological weapons. Emerging Infectious Diseases, 8, 833–841.

    CAS  Google Scholar 

  8. Brown, D. R., Lloyd, J. P., & Schmidt, J. J. (1997). Identification and characterization of a neutralizing monoclonal antibody against botulinum neurotoxin serotype F, following vaccination with active toxin. Hybridoma, 16, 447–456.

    Article  CAS  Google Scholar 

  9. Lee, M. S., Lee, J. C., Choi, C. Y., & Chung, J. (2008). Production and characterization of monoclonal antibody to botulinum neurotoxin type B light chain by phage display. Hybridoma, 27, 18–24. doi:10.1089/hyb.2007.0532.

    Article  CAS  Google Scholar 

  10. Mah, D. C., Hu, W. G., Pon, J. K., Masri, S. A., Fulton, R. E., Monette, P. L., et al. (2003). Recombinant anti-botulinum neurotoxin A single-chain variable fragment antibody generated using a phage display system. Hybridoma and Hybridomics, 22, 277–283. doi:10.1089/153685903322538791.

    Article  CAS  Google Scholar 

  11. Nowakowski, A., Wang, C., Powers, D. B., Amersdorfer, P., Smith, T. J., Montgomery, V. A., et al. (2002). Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 99, 11346–11350. doi:10.1073/pnas.172229899.

    Article  CAS  Google Scholar 

  12. Smith, T. J., Lou, J., Geren, I. N., Forsyth, C. M., Tsai, R., Laporte, S. L., et al. (2005). Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infection and Immunity, 73, 5450–5457. doi:10.1128/IAI.73.9.5450-5457.2005.

    Article  CAS  Google Scholar 

  13. Yang, G. H., Kim, K. S., Kim, H. W., Jeong, S. T., Huh, G. H., Kim, J. C., et al. (2004). Isolation and characterization of a neutralizing antibody specific to internalization domain of Clostridium botulinum neurotoxin type B. Toxicon, 44, 19–25. doi:10.1016/j.toxicon.2004.03.016.

    Article  CAS  Google Scholar 

  14. Breedveld, F. C. (2000). Therapeutic monoclonal antibodies. Lancet, 355, 735–740. doi:10.1016/S0140-6736(00)01034-5.

    Article  CAS  Google Scholar 

  15. Schroff, R. W., Foon, K. A., Beatty, S. M., Oldham, R. K., & Morgan, A. C., Jr. (1985). Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy. Cancer Research, 45, 879–885.

    CAS  Google Scholar 

  16. Kuus-Reichel, K., Grauer, L. S., Karavodin, L. M., Knott, C., Krusemeier, M., & Kay, N. E. (1994). Will immunogenicity limit the use, efficacy, and future development of therapeutic monoclonal antibodies? Clinical and Diagnostic Laboratory Immunology, 1, 365–372.

    CAS  Google Scholar 

  17. Saleh, M. N., LoBuglio, A. F., Wheeler, R. H., Rogers, K. J., Haynes, A., Lee, J. Y., et al. (1990). A phase II trial of murine monoclonal antibody 17–1A and interferon-gamma: clinical and immunological data. Cancer Immunology, Immunotherapy, 32, 185–190. doi:10.1007/BF01771455.

    Article  CAS  Google Scholar 

  18. Adekar, S. P., Al-Saleem, F. H., Elias, M. D., Rybinski, K. A., Simpson, L. L., & Dessain, S. K. (2008). A natural human IgM antibody that neutralizes botulinum neurotoxin in vivo. Hybridoma, 27, 65–69. doi:10.1089/hyb.2007.0549.

    Article  CAS  Google Scholar 

  19. Adekar, S. P., Jones, R. M., Elias, M. D., Al-Saleem, F. H., Root, M. J., Simpson, L. L., et al. (2008). A human monoclonal antibody that binds serotype A botulinum neurotoxin. Hybridoma, 27, 11–17. doi:10.1089/hyb.2007.0536.

    Article  CAS  Google Scholar 

  20. Adekar, S. P., Takahashi, T., Jones, R. M., Al-Saleem, F. H., Ancharski, D. M., Root, M. J., et al. (2008). Neutralization of botulinum neurotoxin by a human monoclonal antibody specific for the catalytic light chain. PLoS ONE, 3, e3023. doi:10.1371/journal.pone.0003023.

    Article  Google Scholar 

  21. Barbas, C. F., 3rd. (1995). Synthetic human antibodies. Nature Medicine, 1, 837–839. doi:10.1038/nm0895-837.

    Article  CAS  Google Scholar 

  22. Burton, D. R., & Barbas, C. F., 3rd. (1994). Human antibodies from combinatorial libraries. Advances in Immunology, 57, 191–280. doi:10.1016/S0065-2776(08)60674-4.

    Article  CAS  Google Scholar 

  23. Lonberg, N. (2005). Human antibodies from transgenic animals. Nature Biotechnology, 23, 1117–1125. doi:10.1038/nbt1135.

    Article  CAS  Google Scholar 

  24. Burton, D. R., Pyati, J., Koduri, R., Sharp, S. J., Thornton, G. B., Parren, P. W., et al. (1994). Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science, 266, 1024–1027. doi:10.1126/science.7973652.

    Article  CAS  Google Scholar 

  25. Crowe, J. E., Jr., Murphy, B. R., Chanock, R. M., Williamson, R. A., Barbas, C. F., 3rd, & Burton, D. R. (1994). Recombinant human respiratory syncytial virus (RSV) monoclonal antibody Fab is effective therapeutically when introduced directly into the lungs of RSV-infected mice. Proceedings of the National Academy of Sciences of the United States of America, 91, 1386–1390. doi:10.1073/pnas.91.4.1386.

    Article  CAS  Google Scholar 

  26. Persson, M. A., Caothien, R. H., & Burton, D. R. (1991). Generation of diverse high-affinity human monoclonal antibodies by repertoire cloning. Proceedings of the National Academy of Sciences of the United States of America, 88, 2432–2436. doi:10.1073/pnas.88.6.2432.

    Article  CAS  Google Scholar 

  27. Fang, J., Qian, J. J., Yi, S., Harding, T. C., Tu, G. H., VanRoey, M., et al. (2005). Stable antibody expression at therapeutic levels using the 2A peptide. Nature Biotechnology, 23, 584–590. doi:10.1038/nbt1087.

    Article  CAS  Google Scholar 

  28. Friguet, B., Chaffotte, A. F., Djavadi-Ohaniance, L., & Goldberg, M. E. (1985). Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. Journal of Immunological Methods, 77, 305–319. doi:10.1016/0022-1759(85)90044-4.

    Article  CAS  Google Scholar 

  29. Yoo, E. M., Chintalacharuvu, K. R., Penichet, M. L., & Morrison, S. L. (2002). Myeloma expression systems. Journal of Immunological Methods, 261, 1–20.

    CAS  Google Scholar 

  30. Davies, J. S., Holter, J. L., Knight, D., Beaucourt, S. M., Murphy, D., Carter, D. A., et al. (2004). Manipulating sorting signals to generate co-expression of somatostatin and eGFP in the regulated secretory pathway from a monocistronic construct. Journal of Molecular Endocrinology, 33, 523–532. doi:10.1677/jme.1.01578.

    Article  CAS  Google Scholar 

  31. Mizuguchi, H., Xu, Z., Ishii-Watabe, A., Uchida, E., & Hayakawa, T. (2000). IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Molecular Therapy, 1, 376–382. doi:10.1006/mthe.2000.0050.

    Article  CAS  Google Scholar 

  32. Jerecic, J., Single, F., Kruth, U., Krestel, H., Kolhekar, R., Storck, T., et al. (1999). Studies on conditional gene expression in the brain. Annals of the New York Academy of Sciences, 868, 27–37. doi:10.1111/j.1749-6632.1999.tb11271.x.

    Article  CAS  Google Scholar 

  33. Reed, C. D., Rast, H., Hu, W. G., Mah, D., Nagata, L., & Masri, S. A. (2007). Expression of furin-linked Fab fragments against anthrax toxin in a single mammalian expression vector. Protein Expression and Purification, 54, 261–266. doi:10.1016/j.pep.2007.03.007.

    Article  CAS  Google Scholar 

  34. Hu, W. G., Chau, D., Wu, J., Jager, S., & Nagata, L. P. (2007). Humanization and mammalian expression of a murine monoclonal antibody against Venezuelan equine encephalitis virus. Vaccine, 25, 3210–3214. doi:10.1016/j.vaccine.2007.01.034.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Gang Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, WG., Jager, S., Chau, D. et al. Generation of a Recombinant Full-Length Human Antibody Binding to Botulinum Neurotoxin A. Appl Biochem Biotechnol 160, 1206–1216 (2010). https://doi.org/10.1007/s12010-009-8657-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8657-1

Keywords

Navigation