Skip to main content
Log in

Production and Characterization of an Alkaline Thermostable Crude Lipase from an Isolated Strain of Bacillus cereus C7

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A bacterial strain isolated from spoiled coconut and identified as Bacillus cereus was found capable of producing alkaline thermostable extracellular lipase. Optimum temperature, time, and pH for enzyme substrate reaction were found to be 60 °C, 10 min, and 8.0 respectively. Common surfactants except Triton X 100 and cetyltrimethylammonium bromide have no or very little inhibitory effects on enzyme activity. The enzyme was found to be stable in presence of oxidizing agents and protease enzyme. The maximum lipase production was achieved at 30–33 °C, pH 8.0 on 24 h of fermentation using 50 ml medium in a 250-ml Erlenmeyer flask. The superior carbon and nitrogen sources for lipase production were starch (2%) and ammonium sulfate (nitrogen level 21.2 mg/100 ml), peptone (nitrogen level 297 mg/100 ml), and urea (nitrogen level 46.62 mg/100 ml) in combination, respectively. The maximum enzyme activity obtained was 33 ± 0.567 IU/ml.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kanwar, S. S., Ghazi, I. A., Chimni, S. S., Joshi, G. K., Rao, G. V., Kaushal, R. K., et al. (2006). Protein Expression and Purification, 46, 421–428. doi:10.1016/j.pep.2005.10.007.

    Article  CAS  Google Scholar 

  2. Kumar, S., Kikon, K., Upadhyay, A., Kanwar, S. S., & Gupta, R. (2005). Protein Expression and Purification, 41, 38–44. doi:10.1016/j.pep.2004.12.010.

    Article  CAS  Google Scholar 

  3. Vincenzini, T. C., Favilli, M. T., Vann, F. P., & Beccari, V. (1984). Canadian Journal of Biochemistry and Cell Biology, 62, 55–59.

    Article  Google Scholar 

  4. Rathi, P., Saxena, R. K., & Gupta, R. (2001). Process Biochemistry, 37, 187–192. doi:10.1016/S0032-9592(01)00200-X.

    Article  CAS  Google Scholar 

  5. Ray, N., Ray, L., Srimani, B. N., & Chattopadhyay, P. (1999). Indian Journal of Experimental Biology, 31, 818–824.

    Google Scholar 

  6. Salle, A. J. (1974). Text book of bacteriology (p. 274, 7th ed.). New Delhi: Tata McGraw-Hill.

    Google Scholar 

  7. Holt, J. G., Krieg, N. R., Peter, H. A. S., & Bergey, D. H. (1994). Bergey’s manual of determinative bacteriology (9th ed.). Baltimore, MD: Williams & Wilkins.

    Google Scholar 

  8. Ghanem, E. H., Al- Sayed, H. A., & Saleh, K. M. (2000). World Journal of Microbiology & Biotechnology, 16, 459–464. doi:10.1023/A:1008947620734.

    Article  CAS  Google Scholar 

  9. Sinchaikun, S., Sookkheo, B., Phutrakul, S., Pan, F. M., & Chen, S. T. (2001). Protein Expression and Purification, 22, 388–398. doi:10.1006/prep.2001.1456.

    Article  CAS  Google Scholar 

  10. Sharma, R., Soni, S. K., Vohra, R. M., Gupta, L. K., & Gupta, J. K. (2002). Process Biochemistry, 37, 1075–1084. doi:10.1016/S0032-9592(01)00316-8.

    Article  CAS  Google Scholar 

  11. Joshi, G. K., Kumar, S., Tripathi, B. N., & Sharma, V. (2006). Current Microbiology, 52, 354–358. doi:10.1007/s00284-005-0224-6.

    Article  CAS  Google Scholar 

  12. Lotrakul, P., & Dharmsthiti, S. (1997). Journal of Biotechnology, 54, 113–120. doi:10.1016/S0168-1656(97)01696-9.

    Article  CAS  Google Scholar 

  13. Vargas, V. A., Delgado, O. D., Kaul, R. H., & Mattiason, B. (2004). Biotechnology Letters, 26, 81–86. doi:10.1023/B:BILE.0000012898.50608.12.

    Article  CAS  Google Scholar 

  14. Lee, S. Y., & Rhee, J. S. (1993). Enzyme and Microbial Technology, 15, 617–623. doi:10.1016/0141-0229(93)90026-X.

    Article  CAS  Google Scholar 

  15. Kambourova, M., Kirilova, N., Mandeva, R., & Derecova, A. (2003). Journal of Molecular Catalysis. B, Enzymatic, 22, 307–313. doi:10.1016/S1381-1177(03)00045-6.

    Article  CAS  Google Scholar 

  16. Lee, K. W., Bae, H. A., Shin, G. S., & Lee, Y. H. (2006). Enzyme and Microbial Technology, 38, 443–448. doi:10.1016/j.enzmictec.2005.06.017.

    Article  CAS  Google Scholar 

  17. Kim, M. H., Kim, H. K., Lee, J. K., Park, S. Y., & Oh, T. K. (2000). Bioscience, Biotechnology, and Biochemistry, 64, 280–286. doi:10.1271/bbb.64.280.

    Article  CAS  Google Scholar 

  18. Ma, J., Zhang, Z., Wang, B., Kong, X., Wang, Y., Cao, S., et al. (2006). Protein Expression and Purification, 45, 22–29. doi:10.1016/j.pep.2005.06.004.

    Article  CAS  Google Scholar 

  19. Banerjee, M., Sengupta, I., & Majumdar, S. K. (1985). Journal of Food Science and Technology (Paris), 22, 137–139.

    CAS  Google Scholar 

  20. Watanabe, N., Ota, Y., Minoda, Y., & Yamada, K. (1977). Agricultural and Biological Chemistry, 41, 1353–1358.

    CAS  Google Scholar 

  21. Outtrup, H., Dambmann, C., & Branner, S. (1988). Patent number WO 88/01293.

  22. Outtrup, H., Dambmann, C., Christiansen, M., & Aaslyng, D. A. (1995). Patent number US, 5, 466–594.

  23. Tuschiya, K., Nakamura, Y., Sakashita, H., & Kimura, T. (1992). Bioscience, Biotechnology, and Biochemistry, 56, 246–250.

    Article  Google Scholar 

  24. Boguslawski, G., & Shultz, J. W. (1992). Patent number US, 5, 118,623.

  25. Wolf, A. M., Showell, M. S., Venegas, M. G., Barnett, B. L., & Wertz, W. C. (1996). In R. Bolt, & C. Betzel (Eds.), Practical protein engineering pp. 113–120. New York: Plenum.

    Google Scholar 

  26. Gulati, R., Isar, J., Kumar, V., Prasad, A. K., Parmar, V. S., & Saxena, R. K. (2005). Pure and Applied Chemistry, 77, 251–262. doi:10.1351/pac200577010251.

    Article  CAS  Google Scholar 

  27. Ferie, D. M. G., Teles, E. M. F., Bon, E. P. S., & Sant’, A. G. L. (1997). Applied Biochemistry and Biotechnology, 63/64, 409–421.

    Google Scholar 

  28. Lima, M. G., Krieger, N., Surquis, M. T. M., Mitchell, D. A., Ramos, L. P., et al. (2003). Food Technology and Biotechnology, 41, 105–110.

    CAS  Google Scholar 

  29. Gupta, R., Saroop, J., & Jani, S. (2004). Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 6, 151–154.

    Google Scholar 

  30. Papaparaskevas, D., Christakopoulous, P., Kekos, D., & Macris, B. J. (1992). Biotechnology Letters, 14, 397–402. doi:10.1007/BF01021254.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully thank the Council of Scientific and Industrial Research (CSIR) for providing research fellowship and funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalitagauri Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, S., Ray, L. Production and Characterization of an Alkaline Thermostable Crude Lipase from an Isolated Strain of Bacillus cereus C7 . Appl Biochem Biotechnol 159, 142–154 (2009). https://doi.org/10.1007/s12010-009-8543-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8543-x

Keywords

Navigation