Skip to main content

Advertisement

Log in

Effect of Ceramide on Mesenchymal Stem Cell Differentiation Toward Adipocytes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Proinflammatory cytokines such as tumor necrosis factor (TNF) α are well known to inhibit adipocyte differentiation. TNF-α triggers ceramide synthesis through binding of TNF-α to its p55 receptor. Therefore, ceramide is implicated in many of the multiple signaling pathways initiated by TNF-α. In breast tissue engineering, it is important to know how to modulate adipocyte differentiation of the stem cells with exogenous additives like ceramide in vitro. We hypothesized that stem cell adipogenesis could be retained in TNF-α-treated preadipocytes in which ceramide synthesis was blocked and that exogenous ceramide could inhibit adipocyte differentiation. We first studied the effect of ceramide synthase inhibitor, Fumonisin B2, on the adipogenesis of murine mesenchymal stem cells (D1 cells), treated with TNF-α. We then studied the effect of specific exogenous C6-ceramide on D1 cell viability and differentiation. It was found that 1 ng/ml of TNF-α significantly inhibited D1 cell adipogenesis. Cells treated with 5 μM of Fumonisin B2 were able to undergo adipogenesis, even when treated with TNF-α. High concentrations of exogenous C6-ceramide (>50 μM) had an inhibitory effect, not only on the pre-confluent proliferation of the D1 cells but also on the post-confluent cell viability. High concentrations of C6-ceramide (>50 μM) also inhibited mitotic clonal expansion when D1 cell differentiation was induced by the addition of an adipogenic hormonal cocktail. C6-ceramide at low concentrations (10–25 μM) inhibited lipid production in D1 cells, demonstrated by decreased levels of both total triglyceride content and specific fatty acid composition percentages. Genetic expression of peroxisome proliferator-activated receptor (PPAR) γ and aP2 in D1 cells was reduced by C6-ceramide treatment. CCAAT/enhancer-binding protein (C/EBP) β levels in D1 cells were reduced by C6-ceramide treatment during early differentiation; PPARγ and aP2 protein levels were reduced at terminal differentiation. C6-ceramide at lower concentrations also decreased lipid accumulation of differentiating D1 cells. Our results suggest that ceramide synthase inhibitor retains the adipogenic potential of TNF-α-treated mesenchymal stem cells, while exogenous ceramide at lower concentrations inhibit the adipogenesis of mesenchymal stem cells. Ceramide, therefore, could be a modulator candidate in breast tissue engineering strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cawthorn, W. P., & Sethi, J. K. (2008). FEBS Letters, 582, 117–131. doi:10.1016/j.febslet.2007.11.051.

    Article  CAS  Google Scholar 

  2. Rondinone, C. M. (2006). Endocrine, 29, 81–90. doi:10.1385/ENDO:29:1:81.

    Article  CAS  Google Scholar 

  3. Petruschke, T., & Hauner, H. (1993). The Journal of Clinical Endocrinology and Metabolism, 76, 742–747. doi:10.1210/jc.76.3.742.

    Article  CAS  Google Scholar 

  4. Xing, H., Northrop, J. P., Grove, J. R., Kilpatrick, K. E., Su, J. L., & Ringold, G. M. (1997). Endocrinology, 138, 2776–2783. doi:10.1210/en.138.7.2776.

    Article  CAS  Google Scholar 

  5. Vidal, H. (2003). Annales d’Endocrinologie, 64, S40–S44.

    CAS  Google Scholar 

  6. Hammarstedt, A., Isakson, P., Gustafson, B., & Smith, U. (2007). Biochemical and Biophysical Research Communications, 357, 700–706. doi:10.1016/j.bbrc.2007.03.202.

    Article  CAS  Google Scholar 

  7. Kudo, M., Sugawara, A., Uruno, A., Takeuchi, K., & Ito, S. (2004). Endocrinology, 145, 4948–4956. doi:10.1210/en.2004-0180.

    Article  CAS  Google Scholar 

  8. Kurebayashi, S., Sumitani, S., Kasayama, S., Jetten, A. M., & Hirose, T. (2001). Endocrine Journal, 48, 249–253. doi:10.1507/endocrj.48.249.

    Article  CAS  Google Scholar 

  9. Ghosh, S., Strum, J. C., & Bell, R. M. (1997). The FASEB Journal, 11, 45–50.

    CAS  Google Scholar 

  10. Kolesnick, R. N., Haimovitz-Friedman, A., & Fuks, Z. (1994). Biochemistry and Cell Biology, 72, 471–474.

    Article  CAS  Google Scholar 

  11. Liu, J., Ginis, I., Spatz, M., & Hallenbeck, J. M. (2000). American Journal of Physiology. Cell Physiology, 278, C144–C153.

    CAS  Google Scholar 

  12. Kajita, K., Mune, T., Kanoh, Y., Natsume, Y., Ishizawa, M., Kawai, Y., et al. (2004). Diabetes Research and Clinical Practice, 66(Suppl 1), S79–S83. doi:10.1016/j.diabres.2003.09.022.

    Article  CAS  Google Scholar 

  13. Kolesnick, R. N., Goni, F. M., & Alonso, A. (2000). Journal of Cellular Physiology, 184, 285–300. doi:10.1002/1097-4652(200009)184:3<285::AID-JCP2>3.0.CO;2-3.

    Article  CAS  Google Scholar 

  14. Hannun, Y. A. (1996). Science, 274, 1855–1859. doi:10.1126/science.274.5294.1855.

    Article  CAS  Google Scholar 

  15. Hannun, Y. A., Luberto, C., & Argraves, K. M. (2001). Biochemistry, 40, 4893–4903. doi:10.1021/bi002836k.

    Article  CAS  Google Scholar 

  16. Reynolds, C. P., Maurer, B. J., & Kolesnick, R. N. (2004). Cancer Letters, 206, 169–180. doi:10.1016/j.canlet.2003.08.034.

    Article  CAS  Google Scholar 

  17. Perry, D. K., Bielawska, A., & Hannun, Y. A. (2000). Methods in Enzymology, 312, 22–31. doi:10.1016/S0076-6879(00)12897-6.

    Article  CAS  Google Scholar 

  18. Hannun, Y. A., & Luberto, C. (2000). Trends in Cell Biology, 10, 73–80. doi:10.1016/S0962-8924(99)01694-3.

    Article  CAS  Google Scholar 

  19. Liao, W. C., Haimovitz-Friedman, A., Persaud, R. S., McLoughlin, M., Ehleiter, D., Zhang, N., et al. (1999). The Journal of Biological Chemistry, 274, 17908–17917. doi:10.1074/jbc.274.25.17908.

    Article  CAS  Google Scholar 

  20. Bose, R., Verheij, M., Haimovitz-Friedman, A., Scotto, K., Fuks, Z., & Kolesnick, R. (1995). Cell, 82, 405–414. doi:10.1016/0092-8674(95)90429-8.

    Article  CAS  Google Scholar 

  21. Chavez, J. A., Knotts, T. A., Wang, L. P., Li, G., Dobrowsky, R. T., Florant, G. L., et al. (2003). The Journal of Biological Chemistry, 278, 10297–10303. doi:10.1074/jbc.M212307200.

    Article  CAS  Google Scholar 

  22. Fillet, M., Bentires-Alj, M., Deregowski, V., Greimers, R., Gielen, J., Piette, J., et al. (2003). Biochemical Pharmacology, 65, 1633–1642. doi:10.1016/S0006-2952(03)00125-4.

    Article  CAS  Google Scholar 

  23. Ruvolo, P. P. (2003). Pharmacological Research, 47, 383–392. doi:10.1016/S1043-6618(03)00050-1.

    Article  CAS  Google Scholar 

  24. Tirosh, O., Aronis, A., & Madar, Z. (2004). Asia Pacific Journal of Clinical Nutrition, 13, S108.

    Google Scholar 

  25. Gomillion, C. T., & Burg, K. J. (2006). Biomaterials, 27, 6052–6063. doi:10.1016/j.biomaterials.2006.07.033.

    Article  CAS  Google Scholar 

  26. Yang, C. C., Ellis, S. E., Xu, F., & Burg, K. J. (2007). Journal of Tissue Engineering and Regenerative Medicine, 1, 146–153. doi:10.1002/term.17.

    Article  CAS  Google Scholar 

  27. Ahmed, S. A., Gogal Jr, R. M., & Walsh, J. E. (1994). Journal of Immunological Methods, 170, 211–224. doi:10.1016/0022-1759(94)90396-4.

    Article  CAS  Google Scholar 

  28. Livak, K. J., & Schmittgen, T. D. (2001). Methods (San Diego, Calif.), 25, 402–408. doi:10.1006/meth.2001.1262.

    CAS  Google Scholar 

  29. Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). The Journal of Biological Chemistry, 226, 497–509.

    CAS  Google Scholar 

  30. Tang, Q. Q., Otto, T. C., & Lane, M. D. (2003). Proceedings of the National Academy of Sciences of the United States of America, 100, 44–49. doi:10.1073/pnas.0137044100.

    Article  CAS  Google Scholar 

  31. Gustafson, B., & Smith, U. (2006). The Journal of Biological Chemistry, 281, 9507–9516. doi:10.1074/jbc.M512077200.

    Article  CAS  Google Scholar 

  32. Wang, E., Norred, W. P., Bacon, C. W., Riley, R. T., & Merrill Jr., A. H. (1991). The Journal of Biological Chemistry, 266, 14486–14490.

    CAS  Google Scholar 

  33. Yoo, H. S., Norred, W. P., Wang, E., Merrill Jr, A. H., & Riley, R. T. (1992). Toxicology and Applied Pharmacology, 114, 9–15. doi:10.1016/0041-008X(92)90090-F.

    Article  CAS  Google Scholar 

  34. Venable, M. E., Lee, J. Y., Smyth, M. J., Bielawska, A., & Obeid, L. M. (1995). The Journal of Biological Chemistry, 270, 30701–30708. doi:10.1074/jbc.270.51.30701.

    Article  CAS  Google Scholar 

  35. Fishbein, J. D., Dobrowsky, R. T., Bielawska, A., Garrett, S., & Hannun, Y. A. (1993). The Journal of Biological Chemistry, 268, 9255–9261.

    CAS  Google Scholar 

  36. Kundu, N., Smyth, M. J., Samsel, L., & Fulton, A. M. (2002). Breast Cancer Research and Treatment, 76, 57–64. doi:10.1023/A:1020224503335.

    Article  CAS  Google Scholar 

  37. Li, X., Cui, Q., Kao, C., Wang, G. J., & Balian, G. (2003). Bone, 33, 652–659. doi:10.1016/S8756-3282(03)00239-4.

    Article  CAS  Google Scholar 

  38. Diduch, D. R., Coe, M. R., Joyner, C., Owen, M. E., & Balian, G. (1993). The Journal of Bone and Joint Surgery. American Volume, 75, 92–105.

    CAS  Google Scholar 

  39. Cui, Q., Wang, Y., Saleh, K. J., Wang, G. J., & Balian, G. (2006). The Journal of Bone and Joint Surgery. American Volume, 88(Suppl 3), 148–154. doi:10.2106/JBJS.F.00534.

    Article  Google Scholar 

  40. Cui, Q., Wang, G. J., & Balian, G. (1997). The Journal of Bone and Joint Surgery. American Volume, 79, 1054–1063.

    CAS  Google Scholar 

  41. Hunt, C. R., Ro, J. H., Dobson, D. E., Min, H. Y., & Spiegelman, B. M. (1986). Proceedings of the National Academy of Sciences of the United States of America, 83, 3786–3790. doi:10.1073/pnas.83.11.3786.

    Article  CAS  Google Scholar 

  42. Papineau, D., Gagnon, A., & Sorisky, A. (2003). Metabolism: Clinical and Experimental, 52, 987–992. doi:10.1016/S0026-0495(03)00165-3.

    CAS  Google Scholar 

  43. Shimabukuro, M., Zhou, Y. T., Levi, M., & Unger, R. H. (1998). Proceedings of the National Academy of Sciences of the United States of America, 95, 2498–2502. doi:10.1073/pnas.95.5.2498.

    Article  CAS  Google Scholar 

  44. Shimabukuro, M., Higa, M., Zhou, Y. T., Wang, M. Y., Newgard, C. B., & Unger, R. H. (1998). The Journal of Biological Chemistry, 273, 32487–32490. doi:10.1074/jbc.273.49.32487.

    Article  CAS  Google Scholar 

  45. Unger, R. H., & Orci, L. (2002). Biochimica et Biophysica Acta, 1585, 202–212.

    CAS  Google Scholar 

  46. Listenberger, L. L., Han, X., Lewis, S. E., Cases, S., Farese Jr, R. V., Ory, D. S., et al. (2003). Proceedings of the National Academy of Sciences of the United States of America, 100, 3077–3082. doi:10.1073/pnas.0630588100.

    Article  CAS  Google Scholar 

  47. Ito, S., Suzuki, N., Kato, S., Takahashi, T., & Takagi, M. (2007). Bone, 40, 84–92. doi:10.1016/j.bone.2006.07.012.

    Article  CAS  Google Scholar 

  48. Gregoire, F. M., Smas, C. M., & Sul, H. S. (1998). Physiological Reviews, 78, 783–809.

    CAS  Google Scholar 

  49. Cowherd, R. M., Lyle, R. E., & McGehee Jr., R. E. (1999). Seminars in Cell & Developmental Biology, 10, 3–10. doi:10.1006/scdb.1998.0276.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a National Science Foundation Presidential Early Career Award and by a Department of Defense Era of Hope Scholar Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. L. Burg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, F., Yang, CC., Gomillion, C. et al. Effect of Ceramide on Mesenchymal Stem Cell Differentiation Toward Adipocytes. Appl Biochem Biotechnol 160, 197–212 (2010). https://doi.org/10.1007/s12010-008-8505-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8505-8

Keywords

Navigation