Skip to main content

Advertisement

Log in

Process Modeling of Comprehensive Integrated Forest Biorefinery—An Integrated Approach

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The key to expanding the energy supply, increasing energy security, and reducing the dependency on foreign oil is to develop advanced technologies to efficiently transform our renewable bioresources into domestically produced bioenergy and bioproducts. Conventional biorefineries, i.e., forest products industry’s pulp and paper mills with long history of sustainable utilization of lignocellulose (wood), offer a suitable platform for being expanded into future integrated forest biorefineries. Due to the pre-existing infrastructure in current forest products operations, this could present a very cost-effective approach to future biorefineries. In order to better understand the overall process, technical, economic, and environmental impacts, a detailed process modeling of the whole integrated forest biorefinery is presented here. This approach uses a combination of Aspen Plus®, WinGEMS®, and Microsoft Excel® to simulate the entire biorefinery in detail with sophisticated communication interface between the three simulations. Preliminary results for a simple case study of an integrated biorefinery show the feasibility of this approach. Further investigations, including additional details, more process options, and complete integration, are currently underway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. Energy Technology Essentials, I.E.A. 2. Biofuel Production. January 2007. Available from: www.iea.org/Textbase/techno/essentials2.pdf. Accessed at May 21, 2008.

  2. Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O’Hare, M., & Kammen, D. M. (2006). Science, 311, 506–508. doi:10.1126/science.1121416.

    Article  CAS  Google Scholar 

  3. Energy Technology Essentials, I.E.A. 3. Biomass for power generation and CHP. January 2007. Available from: http://www.iea.org/Textbase/techno/essentials3.pdf. Accessed at May 21, 2008.

  4. Aden, A., et al. (2002). NREL report TP-510-32438. (2002) Available from: http://www.osti.gov/bridge/. Accessed at May 21, 2008

  5. Williams, R. H., & Larson, E. D. (1996). Biomass and Bioenergy, 10(2–3), 149–166. doi:10.1016/0961-9534(95)00069-0.

    Article  CAS  Google Scholar 

  6. Corti, A., & Lombardi, L. (2004). Energy, 29, 2109–2124. doi:10.1016/j.energy.2004.03.015.

    Article  CAS  Google Scholar 

  7. Marbe, G., Harvey, S., & Berntsson, T. (2004). Energy, 29, 1117–1137. doi:10.1016/j.energy.2004.01.005.

    Article  Google Scholar 

  8. Boerrigter, H., den Uil, H., & Calis, H.-P. (2002) Expert Meeting, 30 September–1 October 2002, Strasbourg, France.

  9. Yamamoto, T., Furuhata, T., & Arai, N. (2002). Journal of Propulsion and Power, 18(2), 432–439. doi:10.2514/2.5952.

    Article  CAS  Google Scholar 

  10. Huang, H. J., Ramaswamy, S., Tschirner, U. W., & Ramarao, B. V. (2008). Separation and Purification Technology, 62(1), 1–21. doi:10.1016/j.seppur.2007.12.011.

    Article  CAS  Google Scholar 

  11. Larson, E. D., Consonni, S., Katofsky, R. E., Iisa, K., Frederick, W. J., Courchene, J. C., Anand, F., & Realff, M. (2006). Presentation for Agenda 2020 CTO meeting. Washington, DC: American Forest and Paper Association.

    Google Scholar 

  12. Walkush, K., & Gustafson, R. R. (2002). TAPPI Journal, 1(5), 13–19.

    CAS  Google Scholar 

  13. Cardoso, M., Oliveira, K. D., Costa, G. A. A., & Passos, M. L. (2009). Applied Energy, 86, 45–51. doi:10.1016/j.apenergy.2008.03.021.

    Article  Google Scholar 

  14. Huang, H. J., Ramaswamy, S., Al-Dajani,W., Tschirner, U., & Cairncross, R. A. (2008). Biomass & Bioenergy. doi:10.1016/j.biombioe.2008.05.007.

  15. Sassner, P., Galbe, M., & Zacchi, G. (2008). Biomass and Bioenergy, 32(5), 422–430. doi:10.1016/j.biombioe.2007.10.014.

    Article  CAS  Google Scholar 

  16. Help Topics in the Help menu of WinGEMS 5.3 (software product of Metso Automation Inc.).

  17. Help Topics in the Help menu of Aspen Plus 2004.1 (software product of Aspen Technology Inc.).

  18. Pulp and paper manufacture, Volume 5. Alkaline pulping, 3rd edition (1989) Grace, T. M., Malcolm, E. W., Kocurek, M. J., Ed., CPPA (Canadian Pulp & Paper Association).

Download references

Acknowledgment

We would like to thank the funding support from the University of Minnesota’s Initiative on Renewable Energy and the Environment (IREE; www.iree.umn.edu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shri Ramaswamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, HJ., Lin, W., Ramaswamy, S. et al. Process Modeling of Comprehensive Integrated Forest Biorefinery—An Integrated Approach. Appl Biochem Biotechnol 154, 26–37 (2009). https://doi.org/10.1007/s12010-008-8478-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8478-7

Keywords

Navigation