Skip to main content
Log in

Application of Calcium Alginate–Starch Entrapped Bitter Gourd (Momordica charantia) Peroxidase for the Removal of Colored Compounds from a Textile Effluent in Batch as well as in Continuous Reactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Calcium alginate–starch entrapped bitter gourd peroxidase has been employed for the treatment of a textile industrial effluent in batch as well as in continuous reactor. The textile effluent was recalcitrant to decolorization by bitter gourd peroxidase; thus, its decolorization was examined in the presence of a redox mediator, 1.0 mM 1-hydroxybenzotriazole. Immobilized enzyme exhibited same pH and temperature optima for effluent decolorization as attained by soluble enzyme. Immobilized enzyme could effectively remove more than 70% of effluent color in a stirred batch process after 3 h of incubation. Entrapped bitter gourd peroxidase retained 59% effluent decolorization reusability even after its tenth repeated use. The two-reactor system containing calcium alginate–starch entrapped enzyme retained more than 50% textile effluent decolorization efficiency even after 2 months of its operation. The absorption spectra of the treated effluent exhibited a marked difference in the absorption at various wavelengths as compared to untreated effluent. The use of a two-reactor system containing immobilized enzyme and an adsorbent will be significantly successful for treating industrial effluents at large scale, and it will help in getting water free from aromatic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BGP:

bitter gourd peroxidase

Con A:

concanavalin A

I-BGP:

immobilized peroxidase

S-BGP:

soluble BGP

References

  1. Zouari-Mechichi, H., Mechichi, T., Dhouib, A., Sayadi, S., Mart’ınez, T. A., & Mart’ınez, J. A. (2006). Enzyme and Microbial Technology, 39, 141–148. doi:10.1016/j.enzmictec.2005.11.027.

    Article  CAS  Google Scholar 

  2. Papic, S., Koprivanac, N., Bozic, L. A., & Metes, A. (2004). Dye Pig, 62, 291–298. doi:10.1016/S0143-7208(03)00148-7.

    Article  CAS  Google Scholar 

  3. Husain, Q. (2006). Critical Reviews in Biotechnology, 60, 201–221. doi:10.1080/07388550600969936.

    Article  CAS  Google Scholar 

  4. Hai, I. F., Yamamoto, K., & Fukushi, K. (2007). Critical Reviews in Environmental Science and Technology, 37, 315–377. doi:10.1080/10643380601174723.

    Article  CAS  Google Scholar 

  5. Zille, A., Tzanov, T., Gubitz, G. M., & Cavaco-Paulo, A. (2003). Biotechnology Letters, 25, 1473–1477. doi:10.1023/A:1025032323517.

    Article  CAS  Google Scholar 

  6. Rojas-Melgarejo, F., & Rodriguez-Lopez, N. J. (2004). Process Biochem, 39, 1455–1464. doi:10.1016/S0032-9592(03)00276-0.

    Article  CAS  Google Scholar 

  7. Akhtar, S., Khan, A. A., & Husain, Q. (2005a). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 80, 198–205. doi:10.1002/jctb.1179.

    Article  CAS  Google Scholar 

  8. Husain, M., & Husain, Q. (2008). Critical Reviews in Environmental Science and Technology, 38, 1–41. doi:10.1080/10643380701501213.

    Article  CAS  Google Scholar 

  9. Lu, L., Zhao, M., & Wang, Y. (2007). World Journal of Microbiology & Biotechnology, 23, 159–166. doi:10.1007/s11274-006-9205-6.

    Article  CAS  Google Scholar 

  10. Akhtar, S., Khan, A. A., & Husain, Q. (2005b). Bioresource Technology, 96, 1804–1811. doi:10.1016/j.biortech.2005.01.004.

    Article  CAS  Google Scholar 

  11. Jan, U., Khan, A. A., & Husain, Q. (2006). World Journal of Microbiology & Biotechnology, 22, 1033–1039. doi:10.1007/s11274-005-3208-6.

    Article  CAS  Google Scholar 

  12. Matto, M., & Husain, Q. (2006). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 81, 1316–1323. doi:10.1002/jctb.1540.

    Article  CAS  Google Scholar 

  13. Akhtar, S., Khan, A. A., & Husain, Q. (2005c). Chemosphere, 60, 291–301. doi:10.1016/j.chemosphere.2004.12.017.

    Article  CAS  Google Scholar 

  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  15. Ramsay, A. J., & Goode, C. (2004). Biotechnology Letters, 26, 197–201. doi:10.1023/B:BILE.0000013711.32890.5d.

    Article  CAS  Google Scholar 

  16. Akhtar, S., & Husain, Q. (2006). Chemosphere, 65, 1228–1235. doi:10.1016/j.chemosphere.2006.04.049.

    Article  CAS  Google Scholar 

  17. Soares, G. M., De Amorim, M. T., & Costa-Ferreira, M. (2001). Journal of Biotechnology, 89, 123–129. doi:10.1016/S0168-1656(01)00302-9.

    Article  CAS  Google Scholar 

  18. Fabbrini, M., Galli, C., & Gentili, P. (2002). Journal of Molecular Catalysis. B, Enzymatic, 16, 231–240. doi:10.1016/S1381-1177(01)00067-4.

    Article  CAS  Google Scholar 

  19. Li, K. C., Xu, F., & Eriksson, K. E. L. (1999). Applied and Environmental Microbiology, 65, 2654–2560.

    CAS  Google Scholar 

  20. Kurniawati, S., & Nicell, A. J. (2007). Enzyme and Microbial Technology, 41, 353–361. doi:10.1016/j.enzmictec.2007.03.003.

    Article  CAS  Google Scholar 

  21. Kulshrestha, Y., & Husain, Q. (2007). Toxicological and Environmental Chemistry, 89, 255–267. doi:10.1080/02772240601081692.

    Article  CAS  Google Scholar 

  22. Mohan, S. V., Prasad, K. K., Rao, N. C., & Sarma, P. N. (2005). Chemosphere, 58, 1097–1105. doi:10.1016/j.chemosphere.2004.09.070.

    Article  CAS  Google Scholar 

  23. Tonegawa, M., Dec, J., & Bollag, J. M. (2003). Journal of Environmental Quality, 32, 1222–1227.

    Article  CAS  Google Scholar 

  24. Azni, I., & Katayon, S. (2003). The Environmentalist, 23, 329–334. doi:10.1023/B:ENVR.0000031411.87732.b1.

    Article  Google Scholar 

  25. Tatsumi, K., Wada, S., & Ichikawa, H. (1996). Biotechnology and Bioengineering, 51, 126–130. doi:10.1002/(SICI)1097-0290(19960705)51:1<126::AID-BIT15>3.0.CO;2-O.

    Article  CAS  Google Scholar 

  26. Bhunia, A., Durani, S., & Wangikar, P. P. (2001). Biotechnology and Bioengineering, 72, 562–567. doi:10.1002/1097-0290(20010305)72:5<:562::AID-BIT1020>3.0.CO;2-S.

    Article  CAS  Google Scholar 

  27. Matto, M., & Husain, Q. (2007). Chemosphere, 69, 338–345. doi:10.1016/j.chemosphere.2007.03.069.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

University Grants Commission and Department of Science and Technology, New Delhi, Government of India is gratefully acknowledged for providing special grants to the Department in the form of DRS and FIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qayyum Husain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matto, M., Satar, R. & Husain, Q. Application of Calcium Alginate–Starch Entrapped Bitter Gourd (Momordica charantia) Peroxidase for the Removal of Colored Compounds from a Textile Effluent in Batch as well as in Continuous Reactor. Appl Biochem Biotechnol 158, 512–523 (2009). https://doi.org/10.1007/s12010-008-8396-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8396-8

Keywords

Navigation