Skip to main content
Log in

Ethanol Production from H2SO3-Steam-Pretreated Fresh Sweet Sorghum Stem by Simultaneous Saccharification and Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present work presents an alternative approach to ethanol production from sweet sorghum: without detoxification, acid-impregnated fresh sweet sorghum stem which contains soluble (glucose and sucrose) and insoluble carbohydrates (cellulose and hemicellulose) was steam pretreated under mild temperature of 100 °C. Simultaneous saccharification and fermentation experiments were performed on the pretreated slurries using Saccharomyces cerevisiae. Experimentally, ground fresh sweet sorghum stem was combined with H2SO3 at dosages of 0.25, 0.50, and 0.75 g/g dry matter (DM) and steam pretreated by varying the residence time (60, 120, or 240 min). According to enzymatic hydrolysis results and ethanol yields, H2SO3 was a powerful and mild acid for improving enzymatic digestibility of sorghum stem. At a solid loading of 10% (w/v) and acid dosage of 0.25 g/g DM H2SO3 at 100 °C for 120 min, 44.5 g/L ethanol was obtained after 48 ± 4 h of simultaneous saccharification and fermentation. This corresponded to an overall ethanol yield of 110% of the theoretical one, based on the soluble carbohydrates in the fresh sweet sorghum stem. The concentrations of hydroxymethylfurfural and furfural of the sulfurous acid pretreated samples were below 0.4 g/L. Ethanol would not inhibit the cellulase activity, at least under the concentration of 34 g/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. FAO (2002). Sweet sorghum in China, In: World food summit, five years later. Agriculture Department, Food and Agriculture Organization of the United Nations (FAO).

  2. Gnansounou, E., Dauriat, A., & Wyman, C. E. (2005). Bioresource Technology, 96, 985–1002. doi:10.1016/j.biortech.2004.09.015.

    Article  CAS  Google Scholar 

  3. Bryan, W. L. (1990). Enzyme and Microbial Technology, 12, 437–442. doi:10.1016/0141-0229(90)90054-T.

    Article  CAS  Google Scholar 

  4. Mamma, D., Koullas, D., Fountoukidis, G., Kekos, D., Macris, B. J., & Koukios, E. (1995). Process Biochemistry, 31(4), 377–381. doi:10.1016/0032-9592(95)00075-5.

    Article  Google Scholar 

  5. Liu, R. H., & Shen, F. (2007). Bioresource Technology, in press.

  6. Teixeira, L. C., Linden, J. C., & Schroeder, H. A. (1999). Renewable Energy, 16, 1070–1073.

    Article  CAS  Google Scholar 

  7. Christakopoulos, P., Li, L. W., Kekos, D., & Macris, B. J. (1993). Bioresource Technology, 45, 89–92. doi:10.1016/0960-8524(93)90095-S.

    Article  CAS  Google Scholar 

  8. Moiser, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Bioresource Technology, 96, 673–686. doi:10.1016/j.biortech.2004.06.025.

    Article  Google Scholar 

  9. Gamez, S., Cabriales, J. J. G., Ramirez, J. A., Garrote, G., & Vazquez, M. (2006). Journal of Food Engineering, 74, 78–88. doi:10.1016/j.jfoodeng.2005.02.005.

    Article  CAS  Google Scholar 

  10. Schell, D. J., Farmer, J., Newman, M., & McMillan, J. D. (2003). Applied Biochemistry and Biotechnology, 105, 69–85. doi:10.1385/ABAB:105:1-3:69.

    Article  Google Scholar 

  11. Torget, R., Walter, P., Himmel, M., & Grohmann, K. (1991). Applied Biochemistry and Biotechnology, 28–29, 75–86. doi:10.1007/BF02922590.

    Article  Google Scholar 

  12. Bernfeld, P. (1959). Methods in Enzymology, 2, 27–29.

    Google Scholar 

  13. Bertolini, M. C., Erlandes, J. R., & Laluse, C. (1991). Biotechnology and Bioengineering, 13, 197–202.

    CAS  Google Scholar 

  14. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268. doi:10.1351/pac198759020257.

    Article  CAS  Google Scholar 

  15. Holtzapple, M. T. (1993). Cellilose. In R. Macrae, R. K. Robinson, & M. J. Sadler (Eds.), Encyclopedia of food science, food technology, and nutrion (pp. 758–767). London: Academic Press.

    Google Scholar 

  16. Weimer, P. J., & Weston, W. M. (1985). Biotechnology and Bioengineering, 27, 1540–1547. doi:10.1002/bit.260271104.

    Article  CAS  Google Scholar 

  17. Converse, A. O. (1993). Substrate factors limiting enzymatic hydrolysis. In J. N. Saddler (Ed.), Bioconversion of Forest and Agricultural Plant Residues, Chapter 4. Oxford: C.A.B. International.

    Google Scholar 

  18. Palmqvist, E., & Hahn, H. B. (2000). Bioresource Technology, 74, 17–24. doi:10.1016/S0960-8524(99)00160-1.

    Article  CAS  Google Scholar 

  19. Palmqvist, E., & Hahn, H. B. (2000). Bioresource Technology, 74, 25–33. doi:10.1016/S0960-8524(99)00161-3.

    Article  CAS  Google Scholar 

  20. Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A., & Alfani, F. (2004). Biotechnology Progress, 20(1), 200–206. doi:10.1021/bp0257978.

    Article  CAS  Google Scholar 

  21. Tengborg, C., Galbe, M., & Zacchi, G. (2001). Enzyme and Microbial Technology, 28, 835–844. doi:10.1016/S0141-0229(01)00342-8.

    Article  CAS  Google Scholar 

  22. Larsson, S., Palmqvist, E., Hahn-Hagerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., et al. (1999). Enzyme and Microbial Technology, 24(3–4), 151–159. doi:10.1016/S0141-0229(98)00101-X.

    Article  CAS  Google Scholar 

  23. Ghosh, P. N. B., & Martin, W. R. B. (1982). Enzyme and Microbial Technology, 4, 425–430. doi:10.1016/0141-0229(82)90075-8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20576013), Fund for the Doctoral Program of Higher Education of China (Grant No. 20030010004), the National Basic Research 973 Program of China (Grant No. 2007CB707804, 2007CB714304), the National High Technology Research and Development 863 Program of China (Grant No. 2006AA020103, 2006AA020102, 2006AA020201), the Natural Science Foundation of Beijing, China (Grant No. 2071002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianwei Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Zhong, J., Zhang, X. et al. Ethanol Production from H2SO3-Steam-Pretreated Fresh Sweet Sorghum Stem by Simultaneous Saccharification and Fermentation. Appl Biochem Biotechnol 160, 401–409 (2010). https://doi.org/10.1007/s12010-008-8333-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8333-x

Keywords

Navigation