Skip to main content
Log in

Brevibacillus sp: A Novel Thermophilic Source for the Production of Bile Salt Hydrolase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A thermophilic microorganism growing within the temperature range of 40–65 °C (optimum at 55 °C) was isolated from hot water springs near Konkan, Maharashtra, India. Based on 16S rDNA sequence analysis, it was concluded that the isolate belongs to the genus Brevibacillus. The present paper reports the isolation, identification, and standardization of fermentation conditions for the production of enzyme, bile salt hydrolase (EC 3.5.1.24) which is produced intracellularly at high temperatures. This is the first report regarding the production of bile salt hydrolase from a thermophilic source. Optimization of fermentation conditions resulted in a 2.9-fold enhancement in enzyme production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Suresh Kumar, R., Branningan, J. A., Prabhune, A. A., Pundle, A. V., Dodson, G. G., Dodson, E. J., et al. (2006). The Journal of Biological Chemistry, 43, 32516–32525. doi:10.1074/jbc.M604172200.

    Article  CAS  Google Scholar 

  2. De Smet, I., Van Hoorde, L., De Saeyer, N., vande Woewtyne, M., & Verstraete, W. (1994). Microbial Ecology in Health and Disease, 7, 315–329.

    Article  Google Scholar 

  3. Anderson, J. W., & Gilliland, S. E. (1999). Journal of the American College of Nutrition, 18, 43–50.

    CAS  Google Scholar 

  4. Pereira, D. I. A., & Gibson, G. R. (2002). Applied and Environmental Microbiology, 68, 4689–4693. doi:10.1128/AEM.68.9.4689-4693.2002.

    Article  CAS  Google Scholar 

  5. Hofmann, A. F. (1999). News in Physiological Sciences, 14, 24–29.

    CAS  Google Scholar 

  6. Russell, D. W. (2003). Annual Review of Biochemistry, 72, 137–174. doi:10.1146/annurev.biochem.72.121801.161712.

    Article  CAS  Google Scholar 

  7. Lundeen, S., & Savage, D. C. (1990). Journal of Bacteriology, 172, 4171–4177.

    CAS  Google Scholar 

  8. Grill, J. P., Schneider, F., Crociani, J., & Ballongue, J. (1995). Applied and Environmental Microbiology, 61, 2577–2582.

    CAS  Google Scholar 

  9. Gopal-Srivastava, R., & Hylemon, P. B. (1988). Journal of Lipid Research, 29, 1079–1085.

    CAS  Google Scholar 

  10. Franz, C. M., Specht, I., Haberer, P., & Holzapfel, W. H. (2001). Journal of Food Protection, 64, 725–729.

    CAS  Google Scholar 

  11. Stellwag, E. J., & Hylemon, P. B. (1976). Biochimica et Biophysica Acta, 452, 165–176.

    CAS  Google Scholar 

  12. Dussurget, O., Cabanes, D., Dehoux, P., Lecuit, M., Buchrieser, C., Glaser, P., et al. (2002). Molecular Microbiology, 45, 1095–1106. doi:10.1046/j.1365-2958.2002.03080.x.

    Article  CAS  Google Scholar 

  13. Dean, M., Cervellati, C., Casanova, E., Squerzanti, M., Lanzara, V., Medici, A., et al. (2002). Applied and Environmental Microbiology, 68, 3126–3128. doi:10.1128/AEM.68.6.3126-3128.2002.

    Article  CAS  Google Scholar 

  14. Marmur, J. (1961). Journal of Molecular Biology, 5, 109–118.

    Article  Google Scholar 

  15. Herrera-Cervera, J. A., Caballero- Mellado, J., Languerre, G., Tichy, H. V., Reguena, N., Amarger, N., Romero, E. M., Olivares, J., & Sanjuan, J. (1999). FEMS Microbiology Ecology, 30, 87–97. doi:10.1111/j.1574-6941.1999.tb00638.x.

    Article  CAS  Google Scholar 

  16. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). Molecular Biology and Evolution, 24, 1596–1599. doi:10.1093/molbev/msm092.

    Article  CAS  Google Scholar 

  17. Stackebrandt, E., & Goebel, B. M. (1994). International Journal of Systematic Bacteriology, 44, 846–849.

    CAS  Google Scholar 

  18. Shida, O., Takagi, H., Kadowaki, K., & Komagata, K. (1996). International Journal of Systematic Bacteriology, 46, 939–946.

    CAS  Google Scholar 

  19. Sharma, A., Adhikari, S., & Satyanarayana, T. (2006). World Journal of Microbiology & Biotechnology, 23, 483–490. doi:10.1007/s11274-006-9250-1.

    Google Scholar 

  20. Kim, G. B., Yi, S. H., & Lee, B. H. (2004). Journal of Dairy Science, 87, 258–266.

    Article  CAS  Google Scholar 

  21. Tanaka, H., Hashiba, H., Kok, J., & Mierau, I. (2000). Applied and Environmental Microbiology, 66, 2502–2512. doi:10.1128/AEM.66.6.2502-2512.2000.

    Article  CAS  Google Scholar 

  22. Begley, M., Gahan, G. M., & Hill, C. (2005). FEMS Microbiology Reviews, 29, 625–651. doi:10.1016/j.femsre.2004.09.003.

    Article  CAS  Google Scholar 

  23. Begley, M., Hill, C., & Gahan, G. M. (2006). Applied and Environmental Microbiology, 72, 1729–1738. doi:10.1128/AEM.72.3.1729-1738.2006.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

SN wishes to thank University Grants Commission for providing research fellowship and also Mr. Sameer Srivastava and Mr. Chinmay Kumar Mantri for their help in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Prabhune.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sridevi, N., Prabhune, A.A. Brevibacillus sp: A Novel Thermophilic Source for the Production of Bile Salt Hydrolase. Appl Biochem Biotechnol 157, 254–262 (2009). https://doi.org/10.1007/s12010-008-8326-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8326-9

Keywords

Navigation