Skip to main content
Log in

Biosorption of Copper and Cadmium in Packed Bed Columns with Live Immobilized Fungal Biomass of Phanerochaete chrysosporium

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biosorption of copper (II) and cadmium (II) by live Phanerochaete chrysosporium immobilized by growing onto polyurethane foam material in individual packed bed columns over two successive cycles of sorption–desorption were investigated in this study. Initial pH and concentrations of the metals in their respective solutions were set optimum to each of those: 4.6 and 35 mg·l−1 in case of copper and 5.3 and 11 mg·l−1 for cadmium. The breakthrough curves obtained for the two metals during sorption in both the cycles exhibited a constant pattern at various bed depths in the columns. The maximum yield of the columns in removing these metals were found to be, respectively, 57% and 43% for copper and cadmium indicating that copper biosorption by the immobilized fungus in its column was better than for cadmium. Recovery values of the sorbed copper and cadmium metals from the respective loaded columns by using 0.1 N HCl as eluant was observed to be quite high at more than 65% and 75%, respectively, at the end of desorption in both the cycles. Breakthrough models of bed-depth service time, Adams–Bohart, Wolborska, and Clark were fitted to the experimental data on sorption of copper and cadmium in the columns, and only the Clark model could fit the sorption performance of the columns well over the entire range of ratios of concentrations of effluent to influent, i.e., C/C 0 for both copper and cadmium biosorption. The kinetic coefficients of mass transfer and other suitable parameters in the system were determined by applying the experimental data at C/C 0 ratios lower than 0.5 to the other three models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

C :

residual metal concentration, mg·l−1

C b :

metal concentration at breakthrough, mg·l−1

C ads :

adsorbed metal concentration, mg·l−1

C eq :

residual metal concentration at equilibrium, mg·l−1

C max :

maximum (equilibrium) capacity of column, mg

C 0 :

initial metal concentration, mg·l−1

k :

kinetic constant in bed depth service time, Adams–Bohart, and Wolborska breakthrough models, l·mg−1·min−1

N 0 :

saturation concentration, mg·l−1

Q :

flow rate, ml·min−1

r :

coefficient of mass transfer in Clark model for breakthrough, 1·min−1

t :

time, min

t b :

service time to breakthrough, min

u :

linear flow rate, cm·min−1

v m :

migration velocity of the concentration front in Clark model for breakthrough, cm·min−1

W :

metal loading into column, mg

Y :

sorption yield, %

z :

bed depth, cm

β :

external mass transfer coefficient in Wolborska breakthrough model, 1·min−1

References

  1. Lameiras, S., Quintelas, C., & Tavares, T. (2008). Bioresource Technology, 99, 801–806.

    Article  CAS  Google Scholar 

  2. Tsezos, M. (2007). Advances in Materials Research, 20 & 21, 589–596.

    Article  Google Scholar 

  3. Yesim, K., Arpa, C., Tan, S., Denizli, A., Genc, P., & Arica, M. Y. (2002). Process Biochemistry, 37, 601–610.

    Article  Google Scholar 

  4. Volesky, B., & Holan, Z. R. (1995). Biotechnology Progress, 11, 235–250.

    Article  CAS  Google Scholar 

  5. Kapoor, A., Viraraghavan, T., & Roy Cullimore, D. (1999). Bioresource Technology, 70, 95–104.

    Article  CAS  Google Scholar 

  6. Ahluwalia, S. S., & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98, 2243–2257.

    Article  CAS  Google Scholar 

  7. Pradhan, S., Singh, S., & Rai, L. C. (2007). Bioresource Technology, 98, 595–601.

    Article  CAS  Google Scholar 

  8. Gopal, M., Pakshirajan, K., & Swaminathan, T. (2002). Applied Biochemistry and Biotechnology, 102, 227–237.

    Article  Google Scholar 

  9. Pakshirajan, K., & Swaminathan, T. (2002). In R. Devi, & N. Ashan (Eds.), Water and environmental management series pp. 1043–1052. UK: IWA Publishing.

    Google Scholar 

  10. Dias, M. A., Lacerda, I. C. A., Pimentel, P. F., de Castro, H. F., & Rosa, C. A. (2002). Letters in Applied Microbiology, 34, 46–50.

    Article  CAS  Google Scholar 

  11. Arica, M. Y., Sharif, F. A., Alaeddinoglu, N. G., Hasaren, N., & Hasaren, V. (1993). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire: 1986), 58, 281–285.

    CAS  Google Scholar 

  12. Chao, S., & Jian, Y. (1998). Water Research, 32, 2746–2752.

    Article  Google Scholar 

  13. Yesim, K., Arpa, C., Tan, S., Denizli, A., Genc, P., & Arica, M. Y. (2002). Process Biochemistry, 37, 601–610.

    Article  Google Scholar 

  14. Tsekovaa, K., & Petrov, G. (2002). Zeitschrift fuÉr Naturforschung Section C Biosciences, 57, 629–633.

    Google Scholar 

  15. Pakshirajan, K., & Swaminathan, T. (2006). Soil Sediment Contamination, 15, 187–197.

    Article  CAS  Google Scholar 

  16. Iqbal, M., Saeed, A., & Zafar, S. I. (2007). Journal of Hazardous Materials, 148, 47–55.

    Article  CAS  Google Scholar 

  17. Bohart, G., & Adams, E. Q. (1920). Journal of the American Chemical Society, 42, 523–544.

    Article  CAS  Google Scholar 

  18. Thomas, A. C. (1944). Journal of the American Chemical Society, 66, 1664–1666.

    Article  CAS  Google Scholar 

  19. Wolborska, A. (1989). Water Research, 23, 85–91.

    Article  CAS  Google Scholar 

  20. Hutchins, R. A. (1973). Chemical Engineering Journal, 80, 133–138.

    CAS  Google Scholar 

  21. Clark, R. M. (1987). Environmental Science & Technology, 21, 573–580.

    Article  CAS  Google Scholar 

  22. Pakshirajan, K., & Swaminathan, T. (2006). Proceedings of the fourth international symposium on southeast asian water environment (pp. 269–276). Bangkok, Thailand.

  23. Volesky, B., Weber, J., & Park, J. M. (2003). Water Research, 37, 297–306.

    Article  CAS  Google Scholar 

  24. Antonio, S., Ballester, A., Blazquez, M. L., Gonzalez, F., Munoz, J., & Hammaini, A. (1999). FEMS Microbiology Reviews, 23, 527–536.

    Google Scholar 

  25. Sag, Y., & Aktay, Y. (2001). Process Biochemistry, 36, 1187–1197.

    Article  CAS  Google Scholar 

  26. Valdman, E., Erijman, L., Pessoa, F. L. P., & Leite, S. G. F. (2001). Process Biochemistry, 36, 869–873.

    Article  CAS  Google Scholar 

  27. Fritz, J. S., & Schmitt, D. H. (1966). Talanta, 13, 123–128.

    Article  CAS  Google Scholar 

  28. Tran, H. H., & Roddick, A. (1999). Water Research, 33, 3001–3011.

    Article  CAS  Google Scholar 

  29. Guibal, E., Lorenzelli, R., Vincent, T., & Le Cloirec, P. (1995). Environmental Technology, 16, 101–114.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pakshirajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakshirajan, K., Swaminathan, T. Biosorption of Copper and Cadmium in Packed Bed Columns with Live Immobilized Fungal Biomass of Phanerochaete chrysosporium . Appl Biochem Biotechnol 157, 159–173 (2009). https://doi.org/10.1007/s12010-008-8283-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8283-3

Keywords

Navigation