Skip to main content
Log in

Optimization of Culture Conditions for Enhanced Decolorization of Cibacron Red FN-2BL by Schizophyllum commune IBL-6

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this study was to exploit the decolorization potential of a newly isolated white-rot fungus Schizophyllum commune IBL-6 for the biodegradation of reactive textile dye Cibacron Red FN-2BL. In the initial decolorization study of 10 days, it was observed that S. commune IBL-6 was a better decolorizer of Cibacron Red FN-2BL. Various process parameters like composition of basal nutrient medium, pH, temperature, additional carbon and nitrogen sources, and initial dyestuff concentration were optimized to develop an economic decolorization process. The optimum dye decolorization was achieved in basal nutrient medium II containing 0.1% Cibacron Red FN-2BL and supplemented with 1% glucose after 3 days incubation at pH 4.5 and 30 °C. All the additional carbon sources were found to enhance decolorization process, whereas most of the nitrogen supplements caused fungal-growth inhibition. The pattern of enzymes involved in the biodegradation of this dye was studied, and manganese peroxidase was found to be the major peroxidase with minor lignin peroxidase and laccase activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Santhy, K., & Selvapathy, P. (2006). Removal of reactive dyes from waste water by adsorption on coir pith activated carbon. Bioresource Technology, 97, 1329–1336.

    Article  CAS  Google Scholar 

  2. Senthilkumar, S., Kalaamani, K., Porkodi, K., Valadalajan, P. R., & Subburam, C. (2005). Adsorption of dissolved reactive dye from aqueous phase on to activated carbon prepared form agricultural waste. Bioresource Technology, 15, 930–937.

    Google Scholar 

  3. Robinson, T., Mcmullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluents: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 225–247.

    Article  Google Scholar 

  4. Sumathi, S., & Manju, B. S. (2000). Update of reactive textile dyes by Aspergillus foetidus. Enzyme and Microbial Technology, 27, 347–355.

    Article  CAS  Google Scholar 

  5. Stolz, A. (2001). Basic and applied aspects in the microbial degradation of azo dyes. Applied Microbiology and Biotechnology, 56, 69–80.

    Article  CAS  Google Scholar 

  6. Ibrahim, B., Nigam, P., Singh, D., & Marchant, R. (1996). Microbial decolorization of textile dye containing effluents: review. Bioresource Technology, 58, 217–227.

    Article  Google Scholar 

  7. Murugesan, K., & Kalaichelvan, P. T. (2003). Synthetic dye decolorization by white-rot fungi. Indian Journal of Experimental Biology, 41, 1076–1087.

    CAS  Google Scholar 

  8. Boer, Y. C. (2002). Understanding decolorization characteristics of reactive azo dyes by Pseudomonas lutecola toxicity and kinetics. Process Biochemistry, 38, 437–446.

    Article  Google Scholar 

  9. Dos-Santos, A. Z., Neto, J. M. C., Tavares, C. R. G., & Da-Costa, S. M. G. (2004). Screening of filamentous fungi for the decolourization of a commercial reactive dyes. Journal of Basic Microbiology, 44, 288–295.

    Article  CAS  Google Scholar 

  10. Asgher, M., Shah, S. A. H., Ali, M., & Legge, R. L. (2006). Decolorization of some reactive textile dyes by white rot fungi isolated in Pakistan. World Journal of Microbiology & Biotechnology, 22, 89–93.

    Article  CAS  Google Scholar 

  11. Boer, C. G., Obici, I., Souza, C. G., & Piralta, R. M. (2004). Decolourization of synthetic dyes by solid state culture of Lantinula (Lantinus) encodes producing manganese peroxidase as main legnolytic enzyme. Bioresource Technology, 94, 107–112.

    Article  CAS  Google Scholar 

  12. Mazmanci, M. A., & Ünyayar, A. (2005). Decolourisation of Reactive Black 5 by Funalia trogii immobilised on Luffa cylindrica sponge. Process Biochemistry, 40, 337–342.

    Article  CAS  Google Scholar 

  13. Levin, L., Papinutt, L., & Forchiassin, F. (2004). Evaluation of Argentinean white rot fungi for their ability to produce Lignin-modifying enzymes and decolorize dyes. Bioresource Technology, 94, 169–176.

    Article  CAS  Google Scholar 

  14. Asgher, M., Asad, M. J., & Legge, R. L. (2006). Enhanced lignin peroxidase synthesis by Phanerochaete Chrysosporium in solid state bioprocessing of a lignocellulosic substrate. World Journal of Microbiology & Biotechnology, 22, 449–453.

    Article  CAS  Google Scholar 

  15. Kapdan, I. K., Kargi, F., McMullan, G., & Marchant, R. (2000). Comparison of white rot fungi cultures for decolorization of textile dyestuffs. Bioprocess Engineering, 22, 347–351.

    Article  CAS  Google Scholar 

  16. Kirk, T. K., & Farrell, R. L. (1987). Enzymatic ‘‘combustion’’: the microbial degradation of lignin. Annual Review of Microbiology, 41, 465–505.

    Article  CAS  Google Scholar 

  17. Kay-Shoemake, J. L., & Watwood, M. E. (1996). Limitations of lignin peroxidase system of the white-rot fungus; Rhanerocheaete chrysoporium. Applied Microbiology and Biotechnology, 46, 438–442.

    Article  CAS  Google Scholar 

  18. Wariishi, H., Valli, K., & Gold, M. H. J. (1992). Manganese (II) oxidation by managanese peroxidase from basidiomycete Phanerochaete chrysosporium. Biological Chemistry, 267, 23688–23695.

    CAS  Google Scholar 

  19. Shin, K. S., & Lee, Y. J. (2000). Purification and characterization of a new member of laccase family from the white rot basidiomycete Coriolus hirsutus. Applied Microbiology and Biotechnology, 384, 109–115.

    CAS  Google Scholar 

  20. Swamy, J., & Ramsay, J. A. (1999). The evaluation of white-rot fungi in the decolorization of textile dyes. Enzyme and Microbial Technology, 24, 130–137.

    Article  CAS  Google Scholar 

  21. Kapdan, I. K., Kargi, F., McMullan, G., & Marchant, R. (2000). Effect of environmental conditions on biological decolourization of textile dyestuff by C. versicolor. Enzyme and Microbial Technology, 26, 381–387.

    Article  CAS  Google Scholar 

  22. Renganathan, S., Thilagaraj, W. R., Mirand, L. R., Guantum, P., & Velan, M. (2006). Accumulation of Acid Orange 7, Acid Red 18 and Reactive Black 5 by growing S. commune. Bioresource Technology, 97, 2189–2193.

    Article  CAS  Google Scholar 

  23. Tak, H. K., Lee, Y., Yang, J., Lee, B., Park, C., & Kim, S. (2004). Decolorization of dye solutions by a membrane bioreactor (MBR) using white-rot fungi. Desalination, 168, 287–293.

    Article  Google Scholar 

  24. Toh, Y., Jia, J., Yen, L., Obbard, J. P., & Ting, Y. (2003). Decolourisation of azo dyes by white-rot fungi (WRF) isolated in Singapore. Enzyme and Microbial Technology, 33, 569–575.

    Article  CAS  Google Scholar 

  25. Leung, P., & Pointing, S. B. (2002). Effect of different carbon and nitrogen regimes on Poly R decolourization by white-rot fungi. Mycological Research, 106, 86–92.

    Article  CAS  Google Scholar 

  26. Kapdan, I. K., & Kargi, F. (2002). Biological decolorization of textile dyestuff containing wastewater by Coriolus versicolor in a rotating biological contactor. Enzyme and Microbial Technology, 30, 195–199.

    Article  CAS  Google Scholar 

  27. Lee, K. K., Kassim, A. M., & Lee, H. K. (2004). The effect of nitrogen supplementation on the efficiency of color and COD removal by Malaysian white-rot fungi in textile dyeing effluents. Water Science and Technology, 50, 73–78.

    CAS  Google Scholar 

  28. Pazarlioglu, N. K., Sariisik, M., & Telefoncu, A. (2005). Laccase: production by Trametes versicolor and application to denim washing. Process Biochemistry, 40, 1673–1678.

    Article  CAS  Google Scholar 

  29. Christian, V., Shrivastava, R., Shukla, D., Modi, H., Rajiv, B., & Vyas, M. (2005). Mediator role of veratryl alcohol in the lignin peroxidase-catalyzed oxidative decolorization of Remazol brilliant blue R. Enzyme and Microbial Technology, 36, 426–431.

    Article  CAS  Google Scholar 

  30. Nagai, M., Sato, T., Watanabe, H., Saito, K., Kawata, M., & Enei, H. (2002). Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Applied Microbiology and Biotechnology, 60, 327–335.

    Article  CAS  Google Scholar 

  31. Qingxiang, Y., Yang, M., Pritsch, K., Yediler, A., Hagn, A., Schloter, M., & Kettrup, A. (2003). Decolorization of synthetic dyes and production of manganese-dependent peroxidase by new fungal isolates. Biotechnology Letters, 25, 709–713.

    Article  Google Scholar 

Download references

Acknowledgment

The manuscript is a part of the project funded by Higher Education Commission (HEC) of Pakistan. The funding by HEC is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haq Nawaz Bhatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatti, H.N., Akram, N. & Asgher, M. Optimization of Culture Conditions for Enhanced Decolorization of Cibacron Red FN-2BL by Schizophyllum commune IBL-6. Appl Biochem Biotechnol 149, 255–264 (2008). https://doi.org/10.1007/s12010-007-8123-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8123-x

Keywords

Navigation