Skip to main content
Log in

Hydrodynamic Characterization of a Column-type Prototype Bioreactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Agro-food industrial processes produce a large amount of residues, most of which are organic. One of the possible solutions for the treatment of these residues is anaerobic digestion in bioreactors. A novel 18-L bioreactor for treating waste water was designed based on pneumatic agitation and semispherical baffles. Flow patterns were visualized using the particle tracer technique. Circulation times were measured with the particle tracer and the thermal technique, while mixing times were measured using the thermal technique. Newtonian fluid and two non-Newtonian fluids were used to simulate the operational conditions. The results showed that the change from Newtonian to non-Newtonian properties reduces mixed zones and increases circulation and mixing times. Circulation time was similar when evaluated with the thermal and the tracer particle methods. It was possible to predict dimensionless mixing time (θ m) using an equivalent Froude number (Fr eq).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

d eq :

equivalent diameter (m)

Fr eq :

equivalent dimensionless Froude number (–)

g :

gravitational acceleration (m s−2)

k :

consistency index (Pa sn)

n :

flow behavior index (–)

R 2 :

coefficient of determination (–)

t c :

circulation time (s)

t m :

mixing time (s)

U f :

superficial velocity of the fluid (m s−1)

\(\mathop \gamma \limits^ \bullet \) :

shear rate (s−1)

θ m :

dimensionless mixing time (–)

τ :

shear stress (Pa)

References

  1. Gómez, X., Cuetos, M. J., Cara, J., Morán, A., & García, A. I. (2006). Renewable Energy, 31, 2017–2024.

    Article  CAS  Google Scholar 

  2. Shigematsu, T., Tang, Y. Q., Kawaguchi, H., Ninomiya, K., Kijima, J., Kobayashi, T., Morimura, S., & Kida, K. (2003). Journal of Bioscience and Bioengineering, 96, 547–558.

    Article  CAS  Google Scholar 

  3. Sheng, G. P., Yu, H. Q., & Li, X. Y. (2006). Biotechnology & Bioengineering, 93, 1095–1102.

    Article  CAS  Google Scholar 

  4. Ong, H. K., Greenfield, P. F., & Pullammanappallil, P. C. (2002). Environmental Technology, 23, 1081–1090.

    Article  CAS  Google Scholar 

  5. Espinosa-Solares, T., Bombardiere, J., Domaschko, M., Chatfield, M., Stafford, D. A., Castillo-Angeles, S., et al. (2006). Applied Biochemistry and Biotechnology, 129–132, 959–968.

    Google Scholar 

  6. Hashimoto, A. G., & Chen, Y. R. (1976). Transactions of the ASAE, 19, 930–934.

    Google Scholar 

  7. Chen, R. Y. (1981). Transactions of the ASAE, 24, 187–192.

    Google Scholar 

  8. Achkari-Begdouri, A., & Goodrich, P. R. (1992). Bioresource Technology, 40, 149–156.

    Article  CAS  Google Scholar 

  9. El-Mashad, H. M., van Loon, W. K. P., Zeeman, G., & Bot, G. P. A. (2005). Bioresource Technology, 96(5), 531–535.

    Article  CAS  Google Scholar 

  10. Vesvikar, M. S., & Al-Dahhan, M. (2005). Biotechnology and Bioengineering, 89, 719–732.

    Article  CAS  Google Scholar 

  11. Espinosa-Solares, T., Brito de la Fuente, E., Tecante, A., & Tanguy, P. A. (2001). Chemical Engineering & Technology, 24, 913–918.

    Article  CAS  Google Scholar 

  12. Espinosa-Solares, T., Brito de la Fuente, E., Tecante, A., Medina-Torres, L., & Tanguy, P. A. (2002). Chemical Engineering Research & Design, 80, 817–823.

    Article  CAS  Google Scholar 

  13. Ulbrecht, J. (1974). Chemical Engineering (London), pp. 347–353.

  14. Rzyski, E. (1993). Chemical Engineering and Technology, 16, 229–233.

    Article  CAS  Google Scholar 

  15. Sánchez Mirón, A., Cerón García, M.-C., García Camacho, F., Molina-Grima, E., & Chisti, Y. (2004). Chemical Engineering Research & Design, 82, 1367–1374.

    Article  Google Scholar 

  16. Ford, D. E., Mashelkar, R. A., & Ulbrecht, J. (1972). Process Technology International, 17, 10.

    Google Scholar 

  17. Wu, X., & Merchuk, J. C. (2003). Chemical Engineering Science, 58, 1599–1614.

    Article  CAS  Google Scholar 

  18. Gouveia, E. R., Hokka, C. O., & Badino-Jr, A. C. (2003). Brazilian Journal of Chemical Engineering, 20, 363–374.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Universidad Autónoma Chapingo and Instituto Politécnico Nacional. We would also like to acknowledge to Olga Lidia Martínez-Flores and Graciela Martínez-Ramírez for their contributions during the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodoro Espinosa-Solares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinosa-Solares, T., Morales-Contreras, M., Robles-Martínez, F. et al. Hydrodynamic Characterization of a Column-type Prototype Bioreactor. Appl Biochem Biotechnol 147, 133–142 (2008). https://doi.org/10.1007/s12010-007-8104-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8104-0

Keywords

Navigation