Skip to main content
Log in

Medium Optimization Based on Statistical Methodologies for Pristinamycins Production by Streptomyces pristinaespiralis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The optimization of nutrient levels for the production of pristinamycins by Streptomyces pristinaespiralis CGMCC 0957 in submerged fermentation was carried out using the statistical methodologies based on the Plackett–Burman design, the steepest ascent method, and the central composite design (CCD). First, the Plackett–Burman design was applied to evaluate the influence of related nutrients in the medium. Soluble starch and MgSO4·7H2O were then identified as the most significant nutrients with a confidence level of 99%. Subsequently, the concentrations of the two nutrients were further optimized using response surface methodology of CCD, together with the steepest ascent method. Accordingly, a second-order polynomial regression model was finally fitted to the experimental data. By solving the regression equation from the model and analyzing the response surface, the optimal levels for soluble starch and MgSO4·7H2O were determined as 20.95 and 5.67g/L, respectively. Under the optimized medium, the yield of pristinamycins in the shake flask and 5-L bioreactor could reach 1.30 and 1.01g/L, respectively, which is the highest yield reported in literature to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kumazawa, J., & Yagisawa, M. (2002). Journal of Infection and Chemotherapy, 8, 125–133.

    Article  Google Scholar 

  2. National Academy of Sciences, Institute of Medicine (1998). Forum on emerging infections. Washington, DC: NAS.

    Google Scholar 

  3. Preud’Homme, J., Tarridec, P., & Belloc, A. (1986). Bulletin de la Societe Chimique de France, 2, 586–591.

    Google Scholar 

  4. Ng, J., & Gosbell, I. B. (2005). Journal of Antimicrobial Chemotherapy, 55, 1008–1012.

    Article  CAS  Google Scholar 

  5. Paris, J. M., Barrière, J. C., Smith, C., & Bost, P. E. (1990). In recent progress in the synthesis of Antibiotics pp. (pp. 185–245). Heidelberg, Berlin:: Springer.

    Google Scholar 

  6. Qadri, S. M. H., Ueno, Y., Mostafa, F. M. A., & Halim, M. (1997). Chemotherapy, 43, 94–99.

    Article  CAS  Google Scholar 

  7. Abdel-Hamid, M. E., & Phillips, O. A. (2003). Journal of Pharmaceutical and Biomedical Analysis, 32, 1167–1174.

    Article  CAS  Google Scholar 

  8. Blanc, V., Gil, P., Bamas-Jacques, N., Lorenzon, S., Zagorec, M., & Schleuniger, J., et al. (1997). Molecular Microbiology, 23, 191–202.

    Article  CAS  Google Scholar 

  9. Hopwood, D. (1997). Nature Biotechnology, 15, 321.

    Article  CAS  Google Scholar 

  10. Bamas-Jacques, N., Lorenzon, S., Lacroix, P., de Swetschin, C., & Crouzet, J. (1999). Journal of Applied Microbiology, 87, 939–948.

    Article  CAS  Google Scholar 

  11. Paquet, V., Goma, G., & Soucaille, P. (1992). Biotechnology Letters, 14, 1065–1070.

    Article  CAS  Google Scholar 

  12. Corvini, P. F. X., Gautier, H., Rondags, E., Vivier, H., Goergen, J. L., & Germain, P. (2000). Microbiology, 146, 2671–2678.

    CAS  Google Scholar 

  13. Francois, V., & Stephane, A. (2001). Microbiology, 147, 2447–2459.

    Google Scholar 

  14. Corvini, P. F. X., Delaunay, S., Maujean, F., Rondags, E., Vivier, H., & Goergen, J. L., et al. (2004). Enzyme and Microbial Technology, 34, 101–107.

    Article  CAS  Google Scholar 

  15. Kennedy, M., & Krouse, D. (1999). Journal of Industrial Microbiology & Biotechnology, 23, 456–475.

    Article  CAS  Google Scholar 

  16. Jin, Z. H. (2001). PhD thesis, Zhejiang University, Hangzhou, China.

  17. Reddy, P. R. M., Ramesh, B., Mrudula, S., Reddy, G., & Seenayya, G. (2003). Process Biochemistry, 39, 267–277.

    Article  CAS  Google Scholar 

  18. Chen, X., Wang, J. H., & Li, D. S. (2007). Biochemical Engineering Journal, 34, 179–184.

    Article  CAS  Google Scholar 

  19. Kalil, S. J., Maugeri, F., & Rodrigues, M. I. (2000). Process Biochemistry, 35, 539–550.

    Article  CAS  Google Scholar 

  20. Silva, C. J. S. M., Gübitz, G., & Cavaco-Paulo, A. (2006). Journal of Chemical Technology and Biotechnology, 81, 8–16.

    Article  CAS  Google Scholar 

  21. Chen, X., Chen, S. W., Sun, M., & Yu, Z. N. (2005). Applied Microbiology and Biotechnology, 69, 390–396.

    Article  CAS  Google Scholar 

  22. Sharma, D. C., & Satyanarayana, T. (2006). Bioresource Technology, 97, 727–733.

    Article  CAS  Google Scholar 

  23. Gouda, M. D., Thakur, M. S., & Karanth, N. G. (2001). World Journal of Microbiology & Biotechnology, 17, 595–600.

    Article  CAS  Google Scholar 

  24. Bogar, B., Szakacs, G., Pandey, A., Adulhameed, S., Linden, J. C., & Tengerdy, R. P. (2003). Biotechnology Progress, 19, 312–319.

    Article  CAS  Google Scholar 

  25. Vaidya, R., Vyas, P., & Chhatpr, H. S. (2003). Enzyme and Microbial Technology, 33, 92–96.

    Article  CAS  Google Scholar 

  26. Himabindu, M., Ravichandra, P., Vishalakshi, K., & Jetty, A. (2006). Applied Biochemistry and Biotechnology, 134, 143–154.

    Article  CAS  Google Scholar 

  27. Jin, Z. H., Lei, Y. L., Lin, J. P., & Cen, P. L. (2006). World Journal of Microbiology & Biotechnology, 22, 129–134.

    Article  CAS  Google Scholar 

  28. Jia, B., Jin, Z. H., Lei, Y. L., Mei, L. H., & Li, N. H. (2006). Biotechnology Letters, 28, 1811–1815.

    Article  CAS  Google Scholar 

  29. Plackett, R. L., & Burman, J. P. (1946). Biometals, 33, 305–325.

    Google Scholar 

  30. Reddy, P. R. M., Mrudula, S., Ramesh, B., Reddy, G., & Seenayya, G. (2000). Bioprocess Engineering, 23, 107–112.

    Article  Google Scholar 

  31. Naveena, B. J., Altaf, M., Bhadriah, K., & Reddy, G. (2005). Bioresource Technology, 96, 485–490.

    Article  CAS  Google Scholar 

  32. Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters.. New York: Wiley.

    Google Scholar 

  33. Chen, Q. H., He, G. Q., & Mokhtar, A. M. A. (2002). Enzyme and Microbial Technology, 30, 667–672.

    Article  CAS  Google Scholar 

  34. Xiong, Z. G. (1995). Principles of fermentative techniques. Beijing, China: Medicine Technological.

    Google Scholar 

  35. Paquet, V., Myint, M., & Roque, C. (1994). Biotechnology and Bioengineering, 44, 445–451.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (20576122), Department of Science and Technology, Zhejiang Province, China (2004C13007), and the Natural Science Foundation of Zhejiang Province, China (Y404291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. H. Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, B., Jin, Z.H. & Mei, L.H. Medium Optimization Based on Statistical Methodologies for Pristinamycins Production by Streptomyces pristinaespiralis . Appl Biochem Biotechnol 144, 133–143 (2008). https://doi.org/10.1007/s12010-007-8012-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8012-3

Keywords

Navigation